Heptazine‐based polymeric carbon nitrides (PCN) are promising photocatalysts for light‐driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom‐up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi‐homogeneous conditions. The superior performance of water‐soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4‐methoxybenzyl alcohol and benzyl alcohol or lignocellulose‐derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re‐dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.
Visible light induced photocatalytic inactivation of bacteria (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis) and fungi (Candida albicans, Aspergillus niger) was tested. Carbon-doped titanium dioxide and TiO2 modified with platinum(IV) chloride complexes were used as suspension or immobilised at the surface of plastic plates. A biocidal effect was observed under visible light irradiation in the case of E. coli in the presence of both photocatalysts. The platinum(IV) modified titania exhibited a higher inactivation effect, also in the absence of light. The mechanism of visible light induced photoinactivation is briefly discussed. The observed detrimental effect of photocatalysts on various microorganism groups decreases in the order: E. coli > S. aureus approximately E. faecalis>>C. albicans approximately A. niger. This sequence results most probably from differences in cell wall or cell membrane structures in these microorganisms and is not related to the ability of catalase production.
Bi 3 YO 6 , which is known as an ionic conductor, was tested here as an electrode and photoanode in contact with aqueous electrolytes. Bi 3 YO 6 was deposited onto the Pt substrate and the such prepared electrode was polarized in various aqueous electrolytes. The optical energy band gap of the material equal to 1.89 eV was determined using the Kubelka-Munk function resulting from the UV-Vis spectrum (allowed indirect transition) and also was calculated using the semi-empirical PM7 method (3.38 eV of HOMO-LUMO energy gap). Despite the yellow color of Bi 3 YO 6 , the tested material exhibits photoelectroactivity only in the UV range of electromagnetic radiation. The anodic photocurrent characteristic for n-type metal oxide semiconductors was recorded. The electrode exhibits diffusion-controlled cathodic activity while polarized in chloride-free aqueous electrolytes.
The mechanism of surface modification of titania by calcination with urea at 400 degrees C was investigated by substituting urea by its thermal decomposition products. It was found that during the urea-induced process titania acts as a thermal catalyst for the conversion of intermediate isocyanic acid to cyanamide. Trimerization of the latter produces melamine followed by polycondensation to melem- and melon-based poly(aminotri-s-triazine) derivatives. Subsequently, amino groups of the latter finish the process by formation of Ti--N bonds through condensation with the OH-terminated titania surface. When the density of these groups is too low, like in substoichiometric titania, no corresponding modification occurs. The mechanistic role of the polytriazine component depends on its concentration. If present in only a small amount, it acts as a molecular photosensitizer. At higher amounts it forms a crystalline semiconducting organic layer, chemically bound to titania. In this case the system represents a unique example of a covalently coupled inorganic-organic semiconductor photocatalyst. Both types of material exhibit the quasi-Fermi level of electrons slightly anodically shifted relative to that of titania. They are all active in the visible-light mineralization of formic acid, whereas nitrogen-modified titania prepared from ammonia is inactive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.