The main hypothesis of this work is that the time of delay in reaction to an unexpected event can be predicted on the basis of the brain activity recorded prior to that event. Such mental activity can be represented by electroencephalographic data. To test this hypothesis, we conducted a novel experiment involving 19 participants that took part in a 2-h long session of simulated aircraft flights. An EEG signal processing pipeline is proposed that consists of signal preprocessing, extracting bandpass features, and using regression to predict the reaction times. The prediction algorithms that are used in this study are the Least Absolute Shrinkage Operator and its Least Angle Regression modification, as well as Kernel Ridge and Radial Basis Support Vector Machine regression. The average Mean Absolute Error obtained across the 19 subjects was 114 ms. The present study demonstrates, for the first time, that it is possible to predict reaction times on the basis of EEG data. The presented solution can serve as a foundation for a system that can, in the future, increase the safety of air traffic.
This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety. Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear Discriminant Analysis, k-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random Forests, and Artificial Neural Networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.