Precise orbit determination demands knowledge of perturbing forces acting on the satellites of the Global Navigation Satellite Systems (GNSS). The metadata published by the European GNSS Agency for the Galileo satellites allow for the composition of the analytical box-wing model dedicated for coping with the direct solar radiation pressure (SRP), albedo, and infrared radiation (IR). Based on the box-wing model, we evaluated both the magnitude and the characteristic periods of accelerations caused by all the aforementioned forces. We assess which perturbations can be absorbed by the extended Empirical CODE Orbit Model (ECOM2) and what are the consequences of neglecting higher-order ECOM2 coefficients. In order to evaluate the impact of SRP, albedo, IR, and the navigation antenna thrust, we perform a series of precise Galileo orbit determination strategies for Galileo In-Orbit-Validation (IOV), Full Operational Capability (FOC), and two FOC satellites launched into eccentric orbits. The proposed box-wing model is capable of absorbing approximately 97% of the SRP in the Sun-satellite direction, whereas the rest can be mitigated by an additionally estimated small set of empirical parameters. The purely physical box-wing model does not fully handle satellite misorientation and re-radiation effects, such as Y -bias, solar panel rotation lag, that is the misalignment causing a constant acceleration perpendicular to the solar panel axis and the direction to the Sun. However, the box-wing model is especially crucial in terms of the absorption of the higher-order terms of SRP and stabilizes the orbit solutions during the eclipsing periods. Based on the SLR residual analysis, we found a systematic effect at the level up to 50 mm resulting from the omission of the high-order empirical orbit coefficients. We also found that the impact of the albedo, IR, and transmitter antenna thrust on the Galileo orbits reach the level of 5, 14, and 20 mm, respectively. Eventually, we obtain the overall accuracy of the Galileo-FOC orbits at the level of 22.5 mm, even for the eclipsing period for the solution which considers the box-wing model with the estimation of the constant empirical accelerations.
Sentinel-3A/3B (S3A/B) satellites are equipped with a number of precise instruments dedicated to the measurement of surface topography, sea and land surface temperatures and ocean and land surface color. The high-precision orbit is guaranteed by three instruments: Global Positioning System (GPS) receiver, laser retroreflector dedicated to Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) antenna. In this article, we check the possibility of using SLR observations and GPS-based reduced-dynamic orbits of active S3A/B satellites for the determination of global geodetic parameters, such as geocenter motion, Earth rotation parameters (ERPs) and the realization of the terrestrial reference frame, based on data from 2016-2018. The calculation process was preceded with the estimation of SLR site range biases, different network constraining tests and a different number of orbital arcs in the analyzed solutions. The repeatability of SLR station coordinates based solely on SLR observations to S3A/B is at the level of 8-16 mm by means of interquartile ranges even without network constraining in 7-day solutions. The combined S3A/B and LAGEOS solutions show a consistency of estimated station coordinates better than 13 mm, geocenter coordinates with a RMS of 6 mm, pole coordinates with a RMS of 0.19 mas and Length-of-day with a RMS of 0.07 ms/day when referred to the IERS-14-C04 series. The altimetry observations have to be corrected by the geocenter motion to obtain unbiased estimates of the mean sea level rise. The geocenter motion is typically derived from SLR measurements to passive LAGEOS cannonball-like satellites. We found, however, that SLR observations to active Sentinel satellites are well suited for the determination of global geodetic parameters, such as Earth rotation parameters and geocenter motion, which even further increases the potential applications of Sentinel missions for deriving geophysical parameters.
The Satellite Laser Ranging (SLR) network struggles with some major limitations including an inhomogeneous global station distribution and uneven performance of SLR sites. The International Laser Ranging Service (ILRS) prepares the time-variable list of the most well-performing stations denoted as 'core sites' and recommends using them for the terrestrial reference frame (TRF) datum realization in SLR processing. Here, we check how different approaches of the TRF datum realization using minimum constraint conditions (MCs) and the selection of datum-defining stations affect the estimated SLR station coordinates, the terrestrial scale, Earth rotation parameters (ERPs), and geocenter coordinates (GCC). The analyses are based on the processing of the SLR observations to LAGEOS-1/-2 collected between 2010 and 2018. We show that it is essential to reject outlying stations from the reference frame realization to maintain a high quality of SLR-based products. We test station selection criteria based on the Helmert transformation of the network w.r.t. the a priori SLRF2014 coordinates to reject misbehaving stations from the list of datum-defining stations. The 25 mm threshold is optimal to eliminate the epoch-wise temporal deviations and to provide a proper number of datum-defining stations. According to the station selection algorithm, we found that some of the stations that are not included in the list of ILRS core sites could be taken into account as potential core stations in the TRF datum realization. When using a robust station selection for the datum definition, we can improve the station coordinate repeatability by 8%, 4%, and 6%, for the North, East and Up components, respectively. The global distribution of datum-defining stations is also crucial for the estimation of ERPs and GCC. When excluding just two core stations from the SLR network, the amplitude of the annual signal in the GCC estimates is changed by up to 2.2 mm, and the noise of the estimated pole coordinates is substantially increased.
Galileo satellites are equipped with laser retroreflector arrays for satellite laser ranging (SLR). In this study, we develop a methodology for the GNSS-SLR combination at the normal equation level with three different weighting strategies and evaluate the impact of laser observations on the determined Galileo orbits. We provide the optimum weighting scheme for precise orbit determination employing the co-location onboard Galileo. The combined GNSS-SLR solution diminishes the semimajor axis formal error by up to 62%, as well as reduces the dependency between values of formal errors and the elevation of the Sun above the orbital plane—the β angle. In the combined solution, the standard deviation of the SLR residuals decreases from 36.1 to 29.6 mm for Galileo-IOV satellites and |β|> 60°, when compared to GNSS-only solutions. Moreover, the bias of the Length-of-Day parameter is 20% lower for the combined solution when compared to the microwave one. As a result, the combination of GNSS and SLR observations provides promising results for future co-locations onboard the Galileo satellites for the orbit determination, realization of the terrestrial reference frames, and deriving geodetic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.