A model luminescent [(PhCO2)4Cu4] (Cu4) complex in the crystalline state was investigated via combined crystallographic and spectroscopic techniques contributed substantially by theoretical modelling. The complex appeared to exhibit luminescence thermochromism, i.e., red phosphorescence at room temperature which changes to green when lowering the temperature to 90 K. The low-energy emissive state was assigned as a cluster-centred triplet, 3CC. The emission from this state predicted in TDDFT (~635 nm) matches the experimental red band observed at 660–715 nm. In contrast, the nature of the high-energy “green” band was less straightforward. The next reached cluster-centred triplet excited state occurred to be energetically close to the experimental value of ~545 nm. The two excited states also exhibit significant metal-to-ligand and ligand-to-metal charge transfer characteristics, especially for solid-state distorted geometries. In both cases the cluster core was expected to become notably contracted when compared to the ground state. Time-resolved photocrystallographic results supported the computationally predicted core contraction upon excitation. Additionally, the differences between the spectroscopic behaviour of the related tetra- and hexanuclear copper(I) complexes, Cu4 and Cu6 (i.e., [(PhCO2)6Cu6]) in the crystalline state were discussed and examined. It appeared that crystal packing may constitute an important factor as far as the lack of luminescence thermochromism in the latter case is concerned. Synopsis: Structure–property relationships characterising a model luminescent [(PhCO2)4Cu4] (Cu4) complex in the crystalline state were investigated via combined crystallographic and spectroscopic techniques contributed by theoretical modelling, and compared with the properties of the related [(PhCO2)6Cu6] (Cu6) complex.
A one‐dimensional seed‐skewness algorithm adapted for X‐ray diffraction signal detection is presented and discussed. The method, primarily designed for photocrystallographic time‐resolved Laue data processing, was shown to work well for the type of data collected at the Advanced Photon Source and European Synchrotron Radiation Facility. Nevertheless, it is also applicable in the case of standard single‐crystal X‐ray diffraction data. The reported algorithm enables reasonable separation of signal from the background in single one‐dimensional data vectors as well as the capability to determine small changes of reflection shapes and intensities resulting from exposure of the sample to laser light. Otherwise, the procedure is objective, and relies only on skewness computation and its subsequent minimization. The new algorithm was proved to yield comparable results to the Kruskal–Wallis test method [Kalinowski, J. A. et al. (2012). J. Synchrotron Rad.19, 637], while the processing takes a similar amount of time. Importantly, in contrast to the Kruskal–Wallis test, the reported seed‐skewness approach does not need redundant input data, which allows for faster data collections and wider applications. Furthermore, as far as the structure refinement is concerned, the reported algorithm leads to the excited‐state geometry closest to the one modelled using the quantum‐mechanics/molecular‐mechanics approach reported previously [Jarzembska, K. N. et al. (2014). Inorg. Chem.53, 10594], when the t and s algorithm parameters are set to the recommended values of 0.2 and 3.0, respectively.
A simple yet efficient instrument-model refinement method for X-ray diffraction data is presented and discussed. The method is based on least-squares minimization of differences between respective normalized (i.e. unit length) reciprocal vectors computed for adjacent frames. The approach was primarily designed to work with synchrotron X-ray Laue diffraction data collected for small-molecule single-crystal samples. The method has been shown to work well on both simulated and experimental data. Tests performed on simulated data sets for small-molecule and protein crystals confirmed the validity of the proposed instrument-model refinement approach. Finally, examination of data sets collected at both BioCARS 14-ID-B (Advanced Photon Source) and ID09 (European Synchrotron Radiation Facility) beamlines indicated that the approach is capable of retrieving goniometer parameters (e.g. detector distance or primary X-ray beam centre) reliably, even when their initial estimates are rather inaccurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.