There are two main subjects in this paper.(1) For a topological dynamical system (X, T ) we study the topological entropy of its "functional envelopes" (the action of T by left composition on the space of all continuous self-maps or on the space of all self-homeomorphisms of X ). In particular we prove that for zero-dimensional spaces X both entropies are infinite except when T is equicontinuous (then both equal zero). (2) We call Slovak space any compact metric space whose homeomorphism group is cyclic and generated by a minimal homeomorphism. Using Slovak spaces we provide examples of (minimal) systems (X, T ) with positive entropy, yet, whose functional envelope on homeomorphisms has entropy zero (answering a question posed by Kolyada and Semikina). Finally, also using Slovak spaces, we resolve a long standing open problem whether the circle is a unique non-degenerate continuum admitting minimal continuous transformations but only invertible: No, some Slovak spaces are such, as well.
We construct a continuous non-invertible minimal transformation of an arbitrary solenoid. Since solenoids, as all other compact monothetic groups, also admit minimal homeomorphisms, our result allows one to classify solenoids among continua admitting both invertible and non-invertible continuous minimal maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.