In the paper we present results of accuracy evaluation of numerous numerical algorithms for the numerical approximation of the Inverse Laplace Transform. The selected algorithms represent diverse lines of approach to this problem and include methods by Stehfest, Abate and Whitt, Vlach and Singhai, De Hoog, Talbot, Zakian and a one in which the FFT is applied for the Fourier series convergence acceleration. We use C++ and Python languages with arbitrary precision mathematical libraries to address some crucial issues of numerical implementation. The test set includes Laplace transforms considered as difficult to compute as well as some others commonly applied in fractional calculus. Evaluation results enable to conclude that the Talbot method which involves deformed Bromwich contour integration, the De Hoog and the Abate and Whitt methods using Fourier series expansion with accelerated convergence can be assumed as general purpose high-accuracy algorithms. They can be applied to a wide variety of inversion problems.
Abstract:In this paper, the discrete differentiation order functions of the variable, fractional-order PD controller (VFOPD) are considered. In the proposed VFOPD controller, a variable, fractional-order backward difference is applied to perform closed-loop, system error, discrete-time differentiation. The controller orders functions which may be related to the controller input or output signal or an input and output signal. An example of the VFOPD controller is applied to the robot arm closed-loop control due to system changes in moment of inertia. The close-loop system step responses are presented.
PACS
IntroductionPID control strategies, for over 60 years, have been a fundamental structure in the control with feedback field [1, 2]. The PD controller structure is used in electrical drives [3], in robotics [4][5][6] and where the robot arm has integration properties driven by DC motor systems [5].In such a closed-loop system (CLS) structure, a zero steady state is achieved fora stepwise reference input [7][8][9][10][11][12]. Additionally a PD controller improves the CLS sta- *
In the paper there are presented and evaluated for effectiveness three methods of accuracy increase of fractional order derivatives and integrals computations for application with the Riemann-Liouville/Caputo formulas. They are based on the ideas of either transforming difficult integrand in the formulas to high-accuracy computations requirements of a applied method of numerical integration or adapting a numerical method of integration to handle with high-accuracy a difficult feature in the integrand. Additional accuracy gain is obtained by incorporating increased precision into computations. The actual accuracy improvement by applying presented methods is compared with the capabilities of wide range of available methods of integration.
Abstract. In this paper the authors present highly accurate and remarkably efficient computational methods for fractional order derivatives and integrals applying Riemann-Liouville and Caputo formulae: the Gauss-Jacobi Quadrature with adopted weight function, the Double Exponential Formula, applying two arbitrary precision and exact rounding mathematical libraries (GNU GMP and GNU MPFR). Example fractional order derivatives and integrals of some elementary functions are calculated. Resulting accuracy is compared with accuracy achieved by applying widely known methods of numerical integration. Finally, presented methods are applied to solve Abel's Integral equation (in Appendix).Key words: accuracy of numerical calculations, fractional order derivatives and integrals, double exponential formula, gauss-jacobi quadrature with adopted weight function, arbitrary precision, numerical integration, abel's integral equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.