Since the discovery of the first catalytic RNA in 1981, the field of ribozyme research has developed from the discovery of catalytic RNA motifs in nature and the elucidation of their structures and catalytic mechanisms, into a field of engineering and design towards application in diagnostics, molecular biology and medicine. Owing to the development of powerful protocols for selection of nucleic acid catalysts with a desired functionality from random libraries, the spectrum of nucleic acid supported reactions has greatly enlarged, and importantly, ribozymes have been accompanied by DNAzymes. Current areas of research are the engineering of allosteric ribozymes for artificial regulation of gene expression, the design of ribozymes and DNAzymes for medicinal and environmental diagnostics, and the demonstration of RNA world relevant ribozyme activities. In addition, new catalytic motifs or novel genomic locations of known motifs continue to be discovered in all branches of life by the help of high-throughput bioinformatic approaches. Understanding the biological role of the catalytic RNA motifs widely distributed in diverse genetic contexts belongs to the big challenges of future RNA research.
We have engineered a hairpin ribozyme that in a two-step reaction supports RNA recombination by catalysing the cleavage of two non-functional RNA precursors (first step) followed by the recombination of two of the cleavage fragments into a functional RNA (second step). The recombination product (yield: 76%) is a fully functional hammerhead ribozyme.
Binding of an indoloquinoline derivative with an aminoalkyl side chain to a truncated sequence from the MYC promoter region was studied through isothermal titration calorimetry (ITC). The targeted MYC3 sequence lacks 3'-flanking nucleotides and forms a monomeric parallel quadruplex (G4) with a blunt-ended 3'-outer tetrad under the solution conditions employed. Analysis of ITC isotherms reveals multiple binding equilibria with the initial formation of a 1:2 ligand/quadruplex complex. Evaluation of electrophoretic mobilities as well as NMR spectral data confirm ligand-induced dimerization of MYC3 quadruplexes with the ligand sandwiched between the two 3'-outer tetrads. Additional ligand molecules in excess bind to the 5'-outer tetrads of the sandwich complex. Such a ligand-promoted G4 dimerization may be exploited for the controlled assembly or disassembly of G4 aggregates to expand on present quadruplex-based technologies.
RNA repair is an emerging strategy for gene therapy. Conventional gene therapy typically relies on the addition of the corrected DNA sequence of a defective gene to restore gene function. As an additional option, RNA repair allows alteration of the sequence of endogenous messenger RNAs (mRNAs). mRNA sequence alteration is either facilitated by intracellular spliceosome machinery or by the intrinsic catalytic activity of trans-acting ribozymes. Previously we developed twin ribozymes, derived from the hairpin ribozyme, by tandem duplication and demonstrated their potential for patchwise RNA repair. Herein we describe the development of such a twin ribozyme for potential repair of a deletion mutation in the oncogenic CTNNB1-ΔS45 mRNA. We demonstrate that hairpin ribozyme units within the twin ribozyme can be adapted to efficiently cleave/ligate non-consensus substrates by introduction of compensatory mutations in the ribozyme. Thus, we show the twin ribozyme mediated repair of truncated CTNNB1 transcripts (up to 1000 nt length). Repair of the entire CTNNB1-ΔS45 mRNA, although apparently possible in general, is hampered in vitro by the secondary structure of the transcript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.