Designing the crossroads capacity is a prerequisite for achieving a high level of service with the same sustainability in stochastic traffic flow. Also, modeling of crossroad capacity can influence on balancing (symmetry) of traffic flow. Loss of priority in a left turn and optimal dimensioning of shared-short line is one of the permanent problems at intersections. A shared–short lane for taking a left turn from a priority direction at unsignalized intersections with a homogenous traffic flow and heterogeneous demands is a two-phase queueing system requiring a first in–first out (FIFO) service discipline and single-server service facility. The first phase (short lane) of the system is the queueing system M(pλ)/M(μ)/1/∞, whereas the second phase (shared lane) is a system with a binomial distribution service. In this research, we explicitly derive the probability of the state of a queueing system with a short lane of a finite capacity for taking a left turn and shared lane of infinite capacity. The presented formulas are under the presumption that the system is Markovian, i.e., the vehicle arrivals in both the minor and major streams are distributed according to the Poisson law, and that the service of the vehicles is exponentially distributed. Complex recursive operations in the two-phase queueing system are explained and solved in manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.