In pursuit of new antitubercular agents, we here report the antimycobacterial (H 37 Rv) and DNA gyrase inhibitory potential of daidzein and khellin natural products (NPs). We procured a total of 16 NPs based on their pharmacophoric similarities with known antimycobacterial compounds. The H 37 Rv strain of M. tuberculosis was found to be susceptible to only two out of the 16 NPs procured; specifically, daidzein and khellin each exhibited an MIC of 25 μg/mL. Moreover, daidzein and khellin inhibited the DNA gyrase enzyme with IC 50 values of 0.042 and 0.822 μg/mL, respectively, compared to ciprofloxacin with an IC 50 value of 0.018 μg/mL. Daidzein and khellin were found to have lower toxicity toward the vero cell line, with IC 50 values of 160.81 and 300.23 μg/mL, respectively. Further, molecular docking study and MD simulation of daidzein indicated that it remained stable inside the cavity of DNA GyrB domain for 100 ns.
Solvothermally synthesized cobalt sulphide/reduced graphene oxide (CoS/rGO) was used to fabricate an electrochemical sensor for detection of artemisinin. Microscopic techniques were used to characterize CoS/rGO nanocomposite. The electrochemical sensor was fabricated by modifying the surface of glassy carbon electrode with CoS/rGO nanocomposite. [Fe(CN)6]3−/4− was used as a mediator to aid oxidation of artemisinin. Differential pulse voltammetric technique was used for the detection of artemisinin. A linear range of 30–100 μM was used. Experimentally, a detection limit of 0.5 μM was obtained. Therefore, the developed sensor can be used for quality control of artemisinin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.