Analysis of the current scientific literature related to the anterolateral ligament and layer-by-layer dissection of the lateral region of 14 cadaveric knees has led to the conclusion that the anterolateral ligament is a thickening of the knee joint capsule located in the third layer of the lateral region of the knee (according to Seebacher) which is not always clearly morphologically differentiated from the remainder of the joint capsule. The anterolateral ligament is unequivocally a part of the joint capsule, which is why any damage to it should be treated in the same way as any other damage to the joint capsule.
Amputations have a devastating impact on patients’ health with consequent psychological distress, economic loss, difficult reintegration into society, and often low embodiment of standard prosthetic replacement. The main characteristic of bionic limbs is that they establish an interface between the biological residuum and an electronic device, providing not only motor control of prosthesis but also sensitive feedback. Bionic limbs can be classified into three main groups, according to the type of the tissue interfaced: nerve-transferred muscle interfacing (targeted muscular reinnervation), direct muscle interfacing and direct nerve interfacing. Targeted muscular reinnervation (TMR) involves the transfer of the remaining nerves of the amputated stump to the available muscles. With direct muscle interfacing, direct intramuscular implants record muscular contractions which are then wirelessly captured through a coil integrated in the socket to actuate prosthesis movement. The third group is the direct interfacing of the residual nerves using implantable electrodes that enable reception of electric signals from the prosthetic sensors. This can improve sensation in the phantom limb. The surgical procedure for electrode implantation consists of targeting the proximal nerve area, competently introducing, placing, and fixing the electrodes and cables, while retaining movement of the arm/leg and nerve, and avoiding excessive neural damage. Advantages of bionic limbs are: the improvement of sensation, improved reintegration/embodiment of the artificial limb, and better controllability. Cite this article: EFORT Open Rev 2020;5:65-72. DOI: 10.1302/2058-5241.5.180038
Although various strength tests and their outcome measures have been proposed for anterior cruciate ligament (ACL) reconstruction (ACLR), their measurement properties still remain relatively underexplored. The aim of this study was to investigate the longitudinal construct validity of the standard isokinetic (IKT) and isometric test (IMT), and of the IMT of alternating consecutive maximal contractions (ACMC). In addition, the concurrent validity of ACMC was assessed and compared with the validity of IMT. The strength of quadriceps and hamstrings in 20 male athletes with an anterior cruciate ligament (ACL) injury were assessed before ACLR, 4 and 6 months after ACLR, by means of IMT, ACMC, and IKT performed at 60 and 180° · s(-1). Significant between-session differences in muscle strength variables were found in the involved quadriceps (F > 6.5; p ≤ 0.05), but not in the uninvolved leg (F < 2.5; p > 0.05). Coefficients of variations in the uninvolved leg (all below 13.5%) were lower than the involved leg (11.7-22.1%). Intraclass correlation coefficients were moderate-to-high for the uninvolved leg and low-to-high for quadriceps of the involved leg. The concurrent validity of ACMC with respect to the IKT (r = 0.57-0.92; p ≤ 0.05) was comparable with the validity of IMT (r = 0.52-0.87; p ≤ 0.05). We conclude that the explored longitudinal construct validity of most of the evaluated variables could be sufficiently sensitive to detect the effects of the applied rehabilitation procedures. In addition, the obtained sensitivity and concurrent validity and the potential advantages of ACMC over IMT, all suggest that ACMC could be a particularly promising method for routine testing of neuromuscular function after ACLR.
The novel test based on isometric alternating consecutive maximal contractions performed by two antagonistic muscles has been recently proposed as a test of muscle function in healthy subjects. The aim of this study was to evaluate reliability and sensitivity of a novel test as a test of knee muscles function in athletes recovering from anterior cruciate ligament reconstruction. Fifteen male athletes with recent ligament reconstruction (4.0 ± 0.1 months following the surgery) and 15 sport and physical education students participated in the study. Peak torques of the quadriceps and hamstring muscles assessed both through the alternating consecutive maximal contractions and standard isokinetic test performed at 60 º/s and 180 º/s served for calculation of the hamstrings-to-quadriceps ratio and the bilateral difference in strength. When applied on individuals recovering from anterior cruciate ligament reconstruction, the novel test revealed a high within-day reliability and sensitivity for detecting imbalances both between antagonistic and between contralateral muscles. The present findings suggest that alternating consecutive maximal contractions could be used as a test of muscle function that is either complementary or alternative to the isokinetic test, particularly in the laboratories where the isokinetic devices are not available. Potential advantages of the novel test could be both a brief testing procedure and a possibility to conduct it using relatively inexpensive devices such as custom made kits containing a single one-axis force transducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.