Identifying plant species requires considerable knowledge and can be difficult without complete specimens. Fourier-transform near-infrared spectroscopy (FT-NIR) is an effective technique for discriminating plant species, especially angiosperms. However, its efficacy has never been tested on ferns. Here we tested the accuracy of FT-NIR at discriminating species of the genus Microgramma. We obtained 16 spectral readings per individual from the adaxial and abaxial surfaces of 100 specimens belonging to 13 species. The analyses included all 1557 spectral variables. We tested different datasets (adaxial+abaxial, adaxial, and abaxial) to compare the correct identification of species through the construction of discriminant models (LDA, PLS) and cross-validation techniques (leave-one-out, K-fold). All analyses recovered an overall high percentage (>90 %) of correct predictions of specimen identifications for all datasets, regardless of the model or cross-validation used. On average, there was > 95 % accuracy when using PLS-DA and both cross-validations. Our results show the high predictive power of FT-NIR at correctly discriminating fern species when using leaves of dried herbarium specimens. The technique is sensitive enough to reflect species delimitation problems and possible hybridization, and it has the potential of helping better delimit and identify fern species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.