Cardiac cells are under constant, self-generated mechanical stress which can affect the differentiation of stem cells into cardiac myocytes, the development of differentiated cells and the maturation of cells in neonatal mammals. In this article, the effects of direct stretch, electrically induced beating and substrate elasticity on the behavior and development of cardiomyocytes are reviewed, with particular emphasis on the effects of substrate stiffness on cardiomyocyte maturation. In order to relate these observations to in-vivo mechanical conditions, we isolated the left ventricle of Black Swiss mice from embryonic day 13.5 through postnatal day 14 and measured the elastic modulus of the epicardium using atomic force microscope indentation. We found that the elastic modulus of the epicardium significantly changes at birth, from an embryonic value of 12 ± 4 kPa to a neonatal value of 39 ± 7 kPa. This change is in the range shown to significantly affect the development of neonatal cardiomyocytes.
The Murphy Roths Large (MRL) mouse, a strain capable of regenerating right ventricular myocardium, has a high post-myocardial infarction (MI) survival rate compared with C57BL/6J (C57) mice. The biological processes responsible for this survival advantage are unknown. To assess the effect of genetic background, the LG/J strain, which harbors 75% of the MRL composite genome, was included in the study. The MRL survival advantage versus C57 mice (92% vs. 68%, P < 0.05) occurred primarily in the first 5 days; LG/J survival was intermediate (P = NS). Microarray data analysis revealed an attenuation of apoptotic (P < 0.05) and stress response transcripts in MRL hearts compared with C57 hearts after MI. Supporting the microarray results, there were fewer TUNEL-positive cells 1 day post-MI in MRL infarcts compared with C57 infarcts (P = 0.001) and fewer CD45-positive cells in the MRL infarct border zone 2 days post-MI (P < 0.01). LG/J results were intermediate (P = NS). MRL hearts had smaller infarct scars and attenuated ventricular dilation 30 days post-MI compared with C57 hearts (P < 0.05). We conclude that the early post-MI survival advantage of MRL mice over the C57 strain is mediated at least in part by reductions in apoptosis and inflammatory infiltration, and that these reductions may influence chronic remodeling. The intermediate survival, apoptosis and inflammation profile of LG/J mice suggests this high tolerance for MI in the MRL could be derived from its shared genetic background with the LG/J.
The Murphy Roths Large (MRL) mouse, a strain capable of regenerating right ventricular myocardium, has a high post-myocardial infarction (MI) survival rate compared with C57BL/6J (C57) mice. The biological processes responsible for this survival advantage are unknown. To assess the effect of genetic background, the LG/J strain, which harbors 75% of the MRL composite genome, was included in the study. The MRL survival advantage versus C57 mice (92% vs. 68%, P < 0.05) occurred primarily in the first 5 days; LG/J survival was intermediate (P = NS). Microarray data analysis revealed an attenuation of apoptotic (P < 0.05) and stress response transcripts in MRL hearts compared with C57 hearts after MI. Supporting the microarray results, there were fewer TUNEL-positive cells 1 day post-MI in MRL infarcts compared with C57 infarcts (P = 0.001) and fewer CD45-positive cells in the MRL infarct border zone 2 days post-MI (P < 0.01). LG/J results were intermediate (P = NS). MRL hearts had smaller infarct scars and attenuated ventricular dilation 30 days post-MI compared with C57 hearts (P < 0.05). We conclude that the early post-MI survival advantage of MRL mice over the C57 strain is mediated at least in part by reductions in apoptosis and inflammatory infiltration, and that these reductions may influence chronic remodeling. The intermediate survival, apoptosis and inflammation profile of LG/J mice suggests this high tolerance for MI in the MRL could be derived from its shared genetic background with the LG/J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.