Fibrolamellar carcinoma is a distinct subtype of hepatocellular carcinoma that predominantly affects young patients without underlying cirrhosis. A recurrent DNAJB1-PRKACA fusion has recently been reported in fibrolamellar carcinomas. To determine the specificity of this fusion and to develop routinely available clinical methods of detection, we developed an RT-PCR assay for paraffin-embedded tissues and a FISH probe for detection of the rearrangements of the PRKACA locus. We also developed an RNA in situ hybridization assay to assess expression levels of the total chimeric transcript and wild-type transcripts. A total of 106 primary liver tumors were studied by RT-PCR, including 26 fibrolamellar carcinomas (4 of which were metastases to the abdominal wall or lymph nodes), 25 conventional hepatocellular carcinomas, 25 cholangiocarcinomas, 25 hepatic adenomas, and 5 hepatoblastomas. RT-PCR was successful in 92% of tested fibrolamellar carcinoma cases (24/26) and the DNAJB1-PRKACA fusion transcript was found in all fibrolamellar carcinomas but not in other tumor types. FISH was tested in 19 fibrolamellar carcinomas and in 6 scirrhous hepatocellular carcinomas, which can closely mimic fibrolamellar carcinoma. Rearrangements of the PRKACA locus was seen in all 19 fibrolamellar carcinoma specimens, but in none of the scirrhous hepatocellular carcinomas. Finally, a RNA in situ hybridization strategy was positive in 7/7 successfully hybridized cases, and showed mRNA over-expression in all of the fibrolamellar carcinomas. In addition, the stromal cells embedded in the characteristic intratumoral fibrosis of fibrolamellar carcinomas and the background liver tissues were negative for the DNAJB1-PRKACA fusion by all tested methods. In conclusion, detection of DNAJB1-PRKACA is a very sensitive and specific finding in support of the diagnosis of fibrolamellar carcinoma.
The time-course of uterine growth, cell proliferation, and microvascular development was evaluated during the first 72 h after implanting estradiol-17beta (E2) into ovariectomized (OVX) ewes. Uterine fresh weight increased 2.3-fold by 24 h and increased further (3.3-fold) by 48 h. The majority (approximately 75%) of this growth response was associated with tissue growth rather than a change in the tissue dry weight:fresh weight ratio. Both uterine cell number (DNA content) and cell size (RNA:DNA ratio) increased from 0 to 24 h (1.8-fold and 1.7-fold, respectively). Cell proliferation also increased dramatically between 8 h and 24 h after E2 implantation. Endometrial microvascular volume density (percentage of tissue volume occupied by microvessels) increased approximately 1.8-fold by 24 h and then remained constant or declined slightly through 72 h. The total endometrial microvascular volume, however, increased approximately 5-fold from 0 to 24 h and increased further by 72 h. Thus, treatment of OVX ewes with E2 caused a dramatic increase in uterine fresh and dry weights by 24 h, due primarily to hyperplasia and hypertrophy, with only a relatively small change in tissue dry weight:fresh weight ratio. This dramatic uterine growth was associated with a profound increase in endometrial microvascular volume.
Double/triple-hit lymphomas (DHL/THL) account for 5–10% of diffuse large B cell lymphoma (DLBCL) with rearrangement of MYC and BCL2 and/or BCL6 resulting in MYC overexpression. Despite the poor prognosis of DHL, R-CHOP chemotherapy remains the treatment backbone and new targeted therapy is needed. We performed comprehensive cytogenetic studies/fluorescence in situ hybridization on DLBCL and Burkitt lymphoma cell lines ( n = 11) to identify the DHL/THL DLBCL in vitro model. We identified MYC/IG in Raji and Ramos (single hit); MYC/IG-BCL2 (DHL) in DOHH2, OCI-LY1, SUDHL2, and OCI-LY10; MYC/IG-BCL2/BCL6 (THL) in VAL; and no MYC rearrangement in U2932 and HBL1 (WT-MYC). Targeting MYC in the DHL/THL DLBCLs through bromodomain extra-terminal inhibitors (BETi) (JQ1, I-BET, and OTX015) significantly ( p < 0.05) reduced proliferation, similar to WT-MYC cells, accompanied by decreased MYC but not BCL2 protein. Moreover, BETi suppressed MYC transcription and decreased BRD4 binding to MYC promoter in DHL cells. CD47 and PD-L1 are immunoregulatory molecules often expressed on tumors and regulated by MYC . High levels of surface CD47 but not surface PD-L1 was observed in DHL/THL, which was reduced by JQ1 treatment. BETi in combination with Pan-HDAC inhibitor had a limited effect on survival of DHL/THL, while combination of BETi and BCL2 inhibitor (ABT-199) had a significant ( p < 0.005) inhibitory effect on survival followed by BCL-XL inhibition. Overall, the data suggests that MYC-expressing DLBCLs are probably addicted to the MYC-oncogenic effect regardless of MYC rearrangements. In summary, we identified an in vitro model for DHL/THL DLBCLs and provide evidence for the therapeutic potential of BET inhibitor alone or in combination with BCL2 inhibitor. Electronic supplementary material The online version of this article (10.1186/s13045-019-0761-2) contains supplementary material, which is available to authorized users.
Adoptive T cell therapy has proven effective against melanoma in mice and humans. However, because most responses are incomplete or transient, cures remain rare. To maximize the efficacy of this therapy, it will be essential to gain a better understanding of the processes which result in tumor relapse. We studied these processes using B16ova murine melanoma and adoptive transfer of OT-I T cells. Transfer of T cells as a single therapy provided a significant survival benefit for mice with established subcutaneous tumors. However, tumors which initially regressed often recurred. By analyzing tumors which emerged in the presence of a potent OT-I response, we identified a novel tumor escape mechanism in which tumor cells evaded T cell pressure by undergoing major genomic changes involving loss of the gene encoding the target tumor antigen. Furthermore, we show that these in vivo processes can be recapitulated in vitro using T cell/tumor cell co-cultures. A single round of in vitro co-culture led to significant loss of the ova gene and a tumor cell population with rapidly induced and diverse karyotypic changes. Although these current studies focus on the model OVA antigen, the finding that T cells can directly promote genomic instability has important implications for the development of adoptive T cell therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.