The failure of foot wounds to heal results in 54,000 people with diabetes having to undergo extremity amputations annually. Therefore, treatment is needed to speed healing in people with diabetes in order to reduce the need for amputation. This study tested the effect of high-voltage pulsed current on foot blood flow in human beings who are at risk for diabetic foot ulcers. Neuropathy, vascular disease, Wagner Class, glucose, gender, ethnicity, and age were measured. A sample of 132 subjects was tested using a repeated-measures design. A baseline transcutaneous oxygen level was obtained; stimulation was applied, and transcutaneous oxygen measurements were recorded at 30- and 60- minute time intervals. The grouped foot transcutaneous oxygen levels decreased (F = 5.66, p =. 0039) following electrical stimulation. Analysis of variance (Scheffe, p <.05) showed that initial transcutaneous oxygen was significantly higher than subsequent readings. However, oxygen response was distributed bimodally: 35 (27%) subjects showed increased transcutaneous oxygen (mean 14.8 mm Hg), and 97 (73%) experienced a decreased transcutaneous oxygen reading (mean 12.2 mm Hg). Logistic regression analysis did not explain these differences. Although this treatment appears to increase blood flow in a subset of patients, further study is needed to identify probable mechanisms for this response.
In this study, the bunny boot was as effective as higher-tech devices. The results, however, were confounded by nurses adding pillows to the bunny boot group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.