Rats were trained to locate food in a response, direction, or place problem on an open field located at 2 positions. In Experiment 1, both the response and direction groups solved the problem. The place group failed to solve the task in approximately 300 trials. Experiment 2 demonstrated that rats need distinguishable start points to solve a place problem when neither a response nor a direction solution is available. Findings from Experiment 3 suggest that a combination of path traveled and distinct cues help to differentiate start points. Experiment 4 replicated the findings using a T maze. These results suggest "place" solutions are difficult for rats. The data are discussed with respect to conditional learning and modern spatial mapping theory.
Rats with hippocampal or sham lesions were trained to find food on a T maze located at 2 positions. Response rats were required to make a right or left turn. Direction rats were required to go in a consistent direction (east or west). Place rats were required to go to a consistent location, relative to room cues. One place group had distinguishable start points at the 2 maze positions, whereas another place group had start points facing the same side of the room. Controls took longer to solve a place problem than the response and direction problems when the start points were not distinguishable. Rats with hippocampal lesions were not different than controls on the response problem but were impaired on the direction and place problems.
The head-direction (HD) signal is believed to originate in the dorsal tegmental nucleus (DTN) and lesions to this structure have been shown to disrupt HD cell firing in other areas along the HD cell circuit. To investigate the role of the DTN in spatial navigation, rats with bilateral, electrolytic (Experiment 1), or neurotoxic (Experiment 2) lesions to the DTN were compared with sham controls on two tasks that differed in difficulty and could be solved using directional heading. Rats were first trained on a direction problem in a water T maze where they learned to travel either east or west from two locations in the experimental room. DTN-lesioned rats were impaired relative to sham controls, both early in training, on the first block of eight trials, and on the total trials taken to reach criterion. In the food-foraging task, rats were trained to leave a home cage at the periphery of a circular table, find food in the center of the table and return to the home cage. Again, DTN-lesioned rats were impaired relative to sham rats, making more errors on the return component of the foraging trip. These data extend previous cell-recording studies and behavioral tests in which rats with electrolytic DTN lesions were used, and they demonstrate the importance of the direction system to spatial learning.
This study examined whether hippocampal or neocortical lesions would impair acquisition of a discrimination task using taste aversions. Rats were injected with a drug 15 min before a flavored solution-lithium chloride pairing. On alternate days, vehicle injections preceded and followed access to the same flavored solution. Rats learned to consume significantly more of the flavored solution after vehicle injections than after drug injections. Rats with hippocampal lesions or neonatal decortication performed as well as controls. Rats with hippocampal lesions also learned a similar task in which visual and textural cues predicted whether access to a flavored solution would be followed by an injection of lithium chloride or vehicle. However, these hippocampal lesions did impair performance in the Morris water task. Occasion setting may involve a type of learning dissociated from both simple classical conditioning and configural learning.
Norepinephrine (NE) in dentate gyrus (DG) produces NE-dependent long-term potentiation (NE-LTP) of the perforant path-evoked potential population spike both in vitro and in vivo. Chemical activators infused near locus coeruleus (LC), the source of DG NE, produce a NE-LTP that is associative, i.e., requires concurrent pairing with perforant path (PP) input. Here, we ask if LC optogenetic stimulation that allows us to activate only LC neurons can induce NE-LTP in DG. We use an adeno-associated viral vector containing a depolarizing channel (AAV8-Ef1a-DIO-eChR2(h134r)-EYFP-WPRE) infused stereotaxically into the LC of TH:Cre rats to produce light-sensitive LC neurons. A co-localization of ~62% in LC neurons was observed for these channels. Under urethane anesthesia, we demonstrated that 5–10 s 10 Hz trains of 30 ms light pulses in LC reliably activated neurons near an LC optoprobe. Ten minutes of the same train paired with 0.1 Hz PP electrical stimulation produced a delayed NE-LTP of population spike amplitude, but not EPSP slope. A leftward shift in the population spike input/output curve at the end of the experiment was also consistent with long-term population spike potentiation. LC neuron activity during the 10 min light train was unexpectedly transient. Increased LC neuronal firing was seen only for the first 2 min of the light train. NE-LTP was more delayed and less robust than reported with LC chemo-activation. Previous estimates of LC axonal conduction times suggest acute release of NE occurs 40–70 ms after an LC neuron action potential. We used single LC light pulses to examine acute effects of NE release and found potentiated population spike amplitude when a light pulse in LC occurred 40–50 ms, but not 20–30 ms, prior to a PP pulse, consistent with conduction estimates. These effects of LC optogenetic activation reinforce evidence for a continuum of NE potentiation effects in DG. The single pulse effects mirror an earlier report using LC electrical stimulation. These acute effects support an attentional role of LC activation. The LTP of PP responses induced by optogenetic LC activation is consistent with the role of LC in long-term learning and memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.