Facial expression is the most challenging task in the field of computer vision. In this paper, an automatic facial expression recognition system from a still frontal posed image is presented. This system recognizes the human expression by observing the shape of the mouth. This paper uses color based segmentation followed by template matching for face detection and localization. For mouth segmentation, Canny_Template method is used. Orientation Histogram is used for feature extraction. Feed forward neural network is used as a classifier for classifying the expressions of supplied face into five basic expressions like surprise, neutral, sad, happy and angry. Experiments are carried out on Myanmar Facial Expression Database and give the correct performance in terms of 100% accuracy for training set and 70.71% accuracy for test set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.