Alterations in fibroblast growth factor receptor (FGFR) genes have been identified as potential driver oncogenes. Pharmacological targeting of FGFRs may therefore provide therapeutic benefit to selected cancer patients, and proof-of-concept has been established in early clinical trials of FGFR inhibitors. Here, we present the molecular structure and preclinical characterization of INCB054828 (pemigatinib), a novel, selective inhibitor of FGFR 1, 2, and 3, currently in phase 2 clinical trials. INCB054828 pharmacokinetics and pharmacodynamics were investigated using cell lines and tumor models, and the antitumor effect of oral INCB054828 was investigated using xenograft tumor models with genetic alterations in FGFR1, 2, or 3. Enzymatic assays with recombinant human FGFR kinases showed potent inhibition of FGFR1, 2, and 3 by INCB054828 (half maximal inhibitory concentration [IC 50 ] 0.4, 0.5, and 1.0 nM, respectively) with weaker activity against FGFR4 (IC 50 30 nM). INCB054828 selectively inhibited growth of tumor cell lines with activation of FGFR signaling compared with cell lines lacking FGFR aberrations. The preclinical pharmacokinetic profile suggests target inhibition is achievable by INCB054828 in vivo with low oral doses. INCB054828 suppressed the growth of xenografted tumor models with FGFR1, 2, or 3 alterations as monotherapy, and the combination of INCB054828 with cisplatin provided significant benefit over either single agent, with an acceptable tolerability. The preclinical data presented for INCB054828, together with preliminary clinical observations, support continued investigation in patients with FGFR alterations, such as fusions and activating mutations.
Ghrelin, but not CCK, is present in breast milk. Since the mammary gland produces ghrelin message, and ghrelin levels in breast milk are higher than those found in plasma, we conclude that ghrelin is produced and secreted by the breast.
Pulmonary alveolar type II cells synthesize and secrete phospholipids and surfactant proteins. In most mammalian species, the synthesis of phospholipids and proteins of lung surfactant increases with fetal lung maturation, which occurs late in gestation. Factors that may promote lung maturation and surfactant production include the placental hormone, leptin, whose expression increases with advancing gestational age. We demonstrate that physiologic concentrations of leptin (1 and 10 ng/mL) increase the levels of surfactant proteins (SP) A, B, and C mRNA as well as SP-A and SP-B protein in d-17 fetal rat lung explants in vitro. To determine whether leptin exerts similar effects in vivo, we administered leptin antenatally to pregnant rats and compared its effects to that of dexamethasone, a known mediator of fetal lung development. Antenatal treatment with leptin for 2 d significantly increased the average weight of the fetal lungs in relation to their body weight. Histologic analysis revealed that the increase in fetal lung weight was accompanied by an increase in the number and maturation of type II alveolar cells and the expression of surfactant proteins B and C in these cells. Collectively, these results suggest that leptin is a cytokine regulator of rat fetal lung maturity.
Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase 1 study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.