One of the main problems in the production of cacao in Ecuador is the disease caused by the fungus Moniliophthora roreri (frosty pod rot) which affects the pods. Here, we evaluate the genetic diversity of this fungus in Ecuador, and its sensitivity to the fungicide azoxystrobin. We evaluated 76 monosporic cultures from the Amazon and the Pacific coast regions. In vitro sensitivity assays tested several doses of the fungicide azoxystrobin to determine the percent of growth inhibition and the IC50. Concentrations of 1 to 0.1 µg mL−1 inhibited the growth of at least 91% of the isolates. Three isolates were the less sensitive (IC50 = 0.0220–0.0364 µg mL−1), two from Guayas (Pacific coast) and one from Sucumbíos (Amazon) provinces. However, M. roreri is highly sensitive, and it could be used in integrated management of the disease. Genetic analyses were carried out by amplifying microsatellite markers (SSR). All the genetic diversity statistics show a higher diversity in the Amazon compared to samples of the coast region; however, the molecular variance was low (FST = 0.11). Discriminant analysis clearly distinguishes three clusters concurrent with the provinces (Sucumbíos, Orellana and El Oro) and a group with the rest of the provinces. Minimum spanning networks shows, unexpectedly, that M. roreri from the coast were derived from at least three independent introductions from the Amazon. Findings are discussed in light of previous Pan-American genetic studies and available historical reports.
Reinfections with SARS-CoV-2 have been verified by the presence of phylogenetically distant viruses in each episode. Here, we report a suspected case of SARS-CoV-2 persistence with reactivation in a 35-years old patient presenting positive RT-PCR on April 7th and August 7th, each episode characterized by mild and severe symptoms, respectively. Sequencing of viral genomes identified only two SNPs indicating the presence of genetically linked viruses for the first time. Subsequently to hospital discharge, the patient presented a positive diagnosis for SARS-CoV-2 in stool, urine and semen samples.
Frosty pod rot (FPR) of cacao is caused by Moniliophthora roreri (MR). Effective management must include chemical or biological control, in addition to agronomic tactics. Flutolanil has been effective in controlling FPR. The objective of this research was to determine the response to flutolanil of MR isolates from the Amazon and Coast regions of Ecuador. Percentage of mycelial growth inhibition (PGI), and medium inhibitory concentration (IC50) against three concentrations of the fungicide were determined. One µg mL-1 of flutolanil in the culture medium inhibited completely the growth of the 76 MR isolates. At 0.1 μg mL-1, 74/76 were inhibited between 70-97 % compared to the control. Conversely, at the lower concentrations (0.01-0.001 μg mL-1) the results of inhibition were only of 22 % and 47 %, respectively. Four groups were identified: one included the most sensitive (66/76) to different degrees, and three groups representing 10 isolates that were stimulated at low concentrations of flutolanil. IC50 values were low, indicating very high sensitivity in the MR population. IC50max were 0.1342 and 0.1457 in two isolates from the Coast and the Amazon regions, respectively. Isolates from the Coast were significantly less sensitive to flutolanil than those from the Amazon ( IC50 = 0.046 ± 0.03 and IC50 = 0.030 ± 0.02, respectively), however, the differences were minimal. There were no significant differences when comparing the provinces. The most stimulated isolates were found in the provinces of Orellana and Los Ríos. It is concluded that flutolanil seems effective against the causal agent of FPR in Ecuador, both Coast and Amazon regions.
Here, we report two sequences of the new SARS-CoV-2 variant recently detected and designed as B.1.526. This variant carries the immune escape-associated mutation E484K and additional mutations in the S, N, NSP2, NSP3, NSP4, NSP6, NSP8, NSP12 and NSP13 genes. Viral sequences were obtained from an individual traveling from the US to Equator with a negative RT-PCR and from one of his closest contacts that became infected. These cases should be considered an alert for the potential circulation of a new variant of concern with the E484K mutation in South America
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.