Highlights d Tiling CRISPR-Cas9 screening identifies cis-regulatory modules of human APOBEC3B gene d Transcription factor CRISPR screening reveals inflammatory activators of APOBEC3B d Tiling STARR-seq identifies AP-1 and NF-kB binding clusters at APOBEC3B enhancers d AP-1 and NF-kB signaling orchestrate APOBEC3B expression and activation in cancer cells
CRISPR-Cas13 systems are unique among Class II CRISPR systems, as they exclusively target RNA. In vitro and in prokaryotic cells, Cas13 cleaves both target and non-target RNA indiscriminately upon activation by a specific target RNA. This property has been exploited for development of diagnostic nucleic acid detection tools. In eukaryotic cells, CRISPR-Cas13 initially seemed to exclusively cleave the target RNA and consequently, CRISPR-Cas13 has been adopted as a specific RNA knockdown tool. Recently, several groups have reported unexpected toxicity or collateral cleavage when using CRISPR-Cas13 in eukaryotic cells, which seems difficult to reconcile with the reported target specificity. To understand these seemingly contradicting findings, we explored the collateral cleavage activity of six Cas13 systems, and show that only the most active ortholog in vitro, LbuCas13a, exhibits strong collateral RNA cleavage activity in human cells. LbuCas13a displayed collateral cleavage in all tested cell lines, targeting both exogenous and endogenous transcripts and using different RNP delivery methods. Using Nanopore sequencing, we found that cytoplasmic RNAs are cleaved without bias by LbuCas13a. Furthermore, the cleavage sites are highly specific and often present in Uracil containing single stranded RNA loops of stem-loop structures. In response to collateral RNA cleavage, cells upregulate stress and innate immune response genes and depending on target transcript levels, RNA degradation resulted in apoptotic cell death. We demonstrate that LbuCas13a can serve as a cell selection tool, killing cells in a target RNA specific manner. As such, CRISPR-Cas13 is a promising new technology that might be useful in anti-tumor applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.