One of the most fundamental biological processes in development, as well as a primary mechanism for tumor metastasis, is epithelial-mesenchymal transformation (EMT). To gain a greater understanding of this transition, we have obtained a genomic profile of the critical stages before and during this rapid change in morphology in the developing mouse palate. By isolating the medial edge epithelium of each palatal shelf, we were able to obtain pure gene expression data without contamination from surrounding mesenchymal cells
The analysis of gene expression in developing organs is a valuable tool for the assessment of genetic fingerprints during the various stages of tissue differentiation and epithelial-mesenchymal transformation (EMT). However, the variety of differentiating cells and the close association of epithelial and mesenchymal cells makes it difficult to extract protein and mRNA from specific cells and tissue and, thus, to assign expressed genes to specific cell populations. We report here the analysis of LEF1 mRNA in epithelial and mesenchymal cells isolated by LCM from different stages of EMT during development of the mouse palate and describe our techniques in detail. By applying a laser capture microdissection (LCM) technique and real-time polymerase chain reaction, we were able to determine mRNA levels that accurately reflect changes in gene expression in specific cells. The sensitivity of the technique is remarkable. Indeed, the mRNAs can be detected for many proteins too low in abundance to stain with antibodies. These techniques will enable embryologists to collect homogeneous groups of cells from heterogeneous populations in developing organs, which otherwise would not be available for gene analysis. Developmental Dynamics 230: 529 -534, 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.