Human herpesvirus 8 (HHV-8)-encoded viral interleukin-6 (vIL-6) has been implicated as a key factor in virus-associated neoplasia because of its proproliferative and survival effects and also in view of its angiogenic properties. A major difference between vIL-6 and human IL-6 (hIL-6) is that vIL-6, uniquely, is largely retained and can signal intracellularly. While vIL-6 is generally considered to be a lytic gene, several reports have noted its low-level expression in latently infected primary effusion lymphoma (PEL) cultures, in the absence of other lytic gene expression. Thus, intracellular autocrine signal transduction by the viral cytokine may be of particular relevance to the growth and survival of latently infected cells and to pathogenesis. Here we report that most intracellular vIL-6 is located in the endoplasmic reticulum (ER), signals via the gp130 signal transducer in this compartment, and does so independently of the gp80 ␣-subunit of the IL-6 receptor, required for hIL-6 signal transduction. Signaling and biological assays incorporating ER-retained vIL-6 and hIL-6 confirmed vIL-6 activity, specifically, in this compartment. Knockdown of vIL-6 expression in PEL cells led to markedly reduced cell growth in normal culture, independently of extracellular cytokines. This could be reversed by reintroduction via virus vector of exclusively ER-retained vIL-6. These data indicate that in virus biology vIL-6 may act to support the growth and survival of cells latently infected with HHV-8 in an autocrine manner via intracrine signaling and that these activities may contribute to the maintenance of latently infected cells and to virus-induced neoplasia.
Human herpesvirus 8 (HHV-8) interleukin-6 (vIL-6) is distinct from human and other cellular IL-6 proteins in that it does not require the nonsignaling ␣-receptor subunit for the formation of gp130-based signal transducing complexes and also is largely retained intracellularly rather than being secreted. We and others have reported that vIL-6 is retained and is active in the endoplasmic reticulum (ER) compartment, and data from our laboratory have demonstrated that intracellular vIL-6 is functional in the autocrine promotion of proliferation and survival of HHV-8 latently infected primary effusion lymphoma cells. It has also been reported that vIL-6 secretion in gp130-deficient cells can be enhanced by introduced gp130, thereby implicating the signal transducer in vIL-6 trafficking to the cell surface. We examine here the requirements for intracellular retention and localization of vIL-6. Using vIL-6-hIL-6 chimeric and point-mutated vIL-6 proteins, we identified regions and residues of vIL-6 influencing vIL-6 secretion. However, there was no correlation between vIL-6 secretion and gp130 interaction. We found that vIL-6, but not hIL-6, could associate stably with ER-resident chaperone protein calnexin. Glycosylation-dependent interaction of vIL-6 with calnexin correlated with proper protein folding, but there was no direct relationship between vIL-6-calnexin interaction and intracellular retention. While calnexin depletion had little influence on absolute amounts of secreted vIL-6, it led to markedly reduced levels of intracellular cytokine. This was reversed by gp130 transduction, which had no detectable effect on vIL-6 secretion, but redistributed vIL-6 into ER-distinct locations in calnexin-depleted cells, specifically. Our data reveal that calnexin plays a role in ER localization of vIL-6 and that gp130 promotes ER exit, but not secretion, of the viral cytokine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.