The 2019 novel coronavirus (2019-nCoV) outbreak has been treated as a Public Health Emergency of International Concern by the World Health Organization. This work made an early prediction of the 2019-nCoV outbreak in China based on a simple mathematical model and limited epidemiological data. Combing characteristics of the historical epidemic, we found part of the released data is unreasonable. Through ruling out the unreasonable data, the model predictions exhibit that the number of the cumulative 2019-nCoV cases may reach 76,000 to 230,000, with a peak of the unrecovered infectives (22,000-74,000) occurring in late February to early March. After that, the infected cases will rapidly monotonically decrease until early May to late June, when the 2019-nCoV outbreak will fade out. Strong anti-epidemic measures may reduce the cumulative infected cases by 40%-49%. The improvement of medical care can also lead to about one-half transmission decrease and effectively shorten the duration of the 2019-nCoV.INDEX TERMS Epidemic transmission, infection rate, mathematical model, novel coronavirus, prediction, removal rate.
The most important motivation for streamflow forecasts is flood prediction and longtime continuous prediction in hydrological research. As for many traditional statistical models, forecasting flood peak discharge is nearly impossible. They can only get acceptable results in normal year. On the other hand, the numerical methods including physics mechanisms and rainfall-atmospherics could provide a better performance when floods coming, but the minima prediction period of them is about one month ahead, which is too short to be used in hydrological application. In this study, a deep neural network was employed to predict the streamflow of the Hankou Hydrological Station on the Yangtze River. This method combined the Empirical Mode Decomposition (EMD) algorithm and Encoder Decoder Long Short-Term Memory (En-De-LSTM) architecture. Owing to the hydrological series prediction problem usually contains several different frequency components, which will affect the precision of the longtime prediction. The EMD technique could read and decomposes the original data into several different frequency components. It will help the model to make longtime predictions more efficiently. The LSTM based En-De-LSTM neural network could make the forecasting closer to the observed in peak flow value through reading, training, remembering the valuable information and forgetting the useless data. Monthly streamflow data (from January 1952 to December 2008) from Hankou Hydrological Station on the Yangtze River was selected to train the model, and predictions were made in two years with catastrophic flood events and ten years rolling forecast. Furthermore, the Root Mean Square Error (RMSE), Coefficient of Determination (R 2), Willmott's Index of agreement (WI) and the Legates-McCabe's Index (LMI) were used to evaluate the goodness-of-fit and performance of this model. The results showed the reliability of this method in catastrophic flood years and longtime continuous rolling forecasting. INDEX TERMS Yangtze River, hydrological time series forecasting, streamflow prediction, empirical mode decomposition, deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.