The aim of this work is to quantify individual and regional differences in the relative concentration of gamma-aminobutyric acid (GABA) in human brain with in vivo magnetic resonance spectroscopy. Spectral editing Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence and GABA analysis toolkit (Gannet) were used to detect and quantify GABA in anterior cingulate cortex (ACC) and occipital cortex (OCC) of healthy volunteers. Residual bootstrap, a model-based statistical analysis technique, was applied to resample the fitting residuals of GABA from the Gaussian fitting model (referred to as GABA thereafter) in both individual and group data of ACC and OCC. The inter-subject coefficient of variation (CV) of GABA in OCC (20.66 %) and ACC (12.55 %) with residual bootstrap was lower than that of a standard Gaussian model analysis (21.58 % and 16.73 % for OCC and ACC, respectively). The intra-subject uncertainty and CV of OCC were lower than that of ACC in both analyses. The residual bootstrap analysis thus provides a more robust uncertainty estimation of individual and group GABA detection in different brain regions, which may be useful in our understanding of GABA biochemistry in brain and its use for the diagnosis of related neuropsychiatric diseases.
The discrete element method (DEM) is commonly used to study various powders in motion during transportation, screening, mixing, etc.; this requires several microscopic parameters to characterize the complex mechanical behavior of the particles. Herein, a new discrete element parameter calibration method is proposed to calibrate the ultrafine agglomerated powder (recycled polyurethane powder). Optimal Latin hypercube sampling and virtual simulation experiments were conducted using the commercial DEM software; the microscopic variables included the static friction coefficient between the particles, collision recovery coefficient, Johnson–Kendall–Roberts surface energy, static friction coefficient between the particles and wall, and collision recovery coefficient. A predictive model based on genetic-algorithm-optimized feedforward neural network (back propagation) was developed to calibrate the microscopic DEM simulation parameters. The cycle search algorithm and mean-shift cluster analysis were used to confirm the input parameters’ range by comparing the mean value of the dynamic angle of repose measured via the batch accumulation test. These parameters were verified by the baffle lifting method and the rotating drum method. This calibration method, once successfully developed, will be suitable for use in a variety of fine viscous powder dynamic flow conditions.
The objective of the present study was to investigate the clinical application of magnetic resonance imaging (MRI)-respiratory gating technology for assessing illness severity in children with obstructive sleep apnea hypopnea syndrome (OSAHS).MRI-respiratory gating technology was used to scan the nasopharyngeal cavities of 51 children diagnosed with OSAHS during 6 respiratory phases. Correlations between the ratio of the area of the adenoid to the area of the nasopalatine pharyngeal cavity (Sa/Snp), with the main indexes of polysomnography (PSG), were analyzed. Receiver operator characteristic (ROC) curve and Kappa analysis were used to determine the diagnostic accuracy of Sa/Snp in pediatric OSAHS.The Sa/Snp was positively correlated with the apnea hypopnea index (AHI) (P < .001) and negatively correlated with the lowest oxygen saturation of blood during sleep (LaSO2) (P < .001). ROC analysis in the 6 respiratory phases showed that the area under the curve (AUC) of the Sa/Snp in the end-expiratory phase was the largest (0.992, P < .001), providing a threshold of 69.5% for the diagnosis of severe versus slight-moderate OSAHS in children. Consistency analysis with the AHI showed a diagnosis accordance rate of 96.0% in severe pediatric OSAHS and 96.2% in slight-moderate pediatric OSAHS (Kappa = 0.922, P < .001).Stenosis of the nasopalatine pharyngeal cavity in children with adenoidal hypertrophy was greatest at the end-expiration phase during sleep. The end-expiratory Sa/Snp obtained by a combination of MRI and respiratory gating technology has potential as an important imaging index for diagnosing and evaluating severity in pediatric OSAHS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.