Background and Objectives: Nonmelanoma skin cancers, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), are the most common skin cancers, presenting nearly as many cases as all other cancers combined. The current gold-standard for clinical diagnosis of these lesions is histopathologic examination, an invasive, time-consuming procedure. There is thus considerable interest in developing a real-time, automated, noninvasive tool for nonmelanoma skin cancer diagnosis. In this study, we explored the capability of Raman microspectroscopy to provide differential diagnosis of BCC, SCC, inflamed scar tissue, and normal tissue in vivo. Study Design: Based on the results of previous in vitro studies, we developed a portable confocal Raman system with a handheld probe for clinical study. Using this portable system, we measured Raman spectra of 21 suspected nonmelanoma skin cancers in 19 patients with matched normal skin spectra. These spectra were input into nonlinear diagnostic algorithms to predict pathological designation. Results: All of the BCC (9/9), SCC (4/4), and inflamed scar tissues (8/8) were correctly predicted by the diagnostic algorithm, and 19 out of 21 normal tissues were correctly classified. This translates into a 100% (21/21) sensitivity and 91% (19/21) specificity for abnormality, with a 95% (40/ 42) overall classification accuracy. Conclusions: These findings reveal Raman microspectroscopy to be a viable tool for real-time diagnosis and guidance of nonmelanoma skin cancer resection.
Melanomas rarely occur before puberty, have a higher death rate for males, and tend to be more invasive during pregnancy. Prior to the discovery of a second oestrogen receptor (ERbeta), studies with the initial oestrogen receptor, ERalpha, showed no obvious role for oestrogen in the pathophysiology of benign or malignant melanocytic lesions. To investigate the specific immunostaining patterns of ERalpha and ERbeta, benign nevocytic nevi, dysplastic nevi with mild, moderate and severe cytological atypia, lentigo malignas and melanomas of varying depth (Clark) and thickness (Breslow) were studied. ERbeta but not ERalpha was the predominant oestrogen receptor we found in all types of benign and malignant melanocytic lesions. The most intense ERbeta immunostaining was seen in melanocytes in dysplastic nevi with severe cytological atypia and in lentigo malignas. ERbeta expression levels also correlated with the malignant tumor microenvironment; i.e., melanocytes in proximity with keratinocytes>deeper dermal melanocytes in contact with stroma>minimally invasive melanomas>Clark Level III/IV or thick melanomas (Breslow). Discovery that ERbeta expression varies in relation to the tumor microenvironment and increasing depth of invasion suggests its possible usefulness as a surrogate marker for neoplasia and prognosis in malignant melanoma.
We investigate the potential of near-infrared Raman microspectroscopy to differentiate between normal and malignant skin lesions. Thirty-nine skin tissue samples consisting of normal, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma from 39 patients were investigated. Raman spectra were recorded at the surface and at 20-microm intervals below the surface for each sample, down to a depth of at least 100 microm. Data reduction algorithms based on the nonlinear maximum representation and discrimination feature (MRDF) and discriminant algorithms using sparse multinomial logistic regression (SMLR) were developed for classification of the Raman spectra relative to histopathology. The tissue Raman spectra were classified into pathological states with a maximal overall sensitivity and specificity for disease of 100%. These results indicate the potential of using Raman microspectroscopy for skin cancer detection and provide a clear rationale for future clinical studies.
Melanoma is usually apparent on the skin and readily detected by trained medical providers using a routine total body skin examination, yet this malignancy is responsible for the majority of skin cancer-related deaths. Currently, there is no national consensus on skin cancer screening in the USA, but dermatologists and primary care providers are routinely confronted with making the decision about when to recommend total body skin examinations and at what interval. The objectives of this paper are: to propose rational, risk-based, data-driven guidelines commensurate with the US Preventive Services Task Force screening guidelines for other disorders; to compare our proposed guidelines to recommendations made by other national and international organizations; and to review the US Preventive Services Task Force's 2016 Draft Recommendation Statement on skin cancer screening.
Background and Objective The current standard for diagnosis of skin cancers is visual inspection followed by biopsy and histopathology. This process can be invasive, subjective, time consuming, and costly. Optical techniques, including Optical Coherence Tomography (OCT) and Raman Spectroscopy (RS), have been developed to perform non-invasive characterization of skin lesions based on either morphological or biochemical features of disease. The objective of this work is to report a clinical instrument capable of both morphological and biochemical characterization of skin cancers with RS-OCT. Materials and Methods The portable instrument utilizes independent 785 nm RS and 1310 nm OCT system backbones. The two modalities are integrated in a 4” (H) × 5”(W) × 8”(L) clinical probe. The probe enables sequential acquisition of co-registered OCT and RS data sets. The axial response of the RS collection in the skin was estimated using scattering phantoms. In addition, RS-OCT data from patients with cancerous and non-cancerous lesions are reported. Results The RS-OCT instrument is capable of screening areas as large as 15 mm (transverse) by 2.4 mm (in depth) at up to 8 frames/sec with OCT, and identifying locations to perform RS. RS signal is collected from a 44 µm transverse spot through a depth of approximately 530 µm. RS-OCT data sets from a superficial scar and a nodular BCC are reported to demonstrate the clinical potential of the instrument. Conclusion The RS-OCT instrument reported here is capable of morphological and biochemical characterization of cancerous skin lesions in a clinical setting. OCT can visualize microstructural irregularities and perform an initial morphological analysis of the lesion. The images can be used to guide acquisition of biochemically specific Raman spectra. The two data sets can then be evaluated with respect to one another to take advantage of the mutually complimentary nature of RS and OCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.