a b s t r a c tAir quality is strongly dependent on weather and is therefore sensitive to climate change. Recent studies have provided estimates of this climate effect through correlations of air quality with meteorological variables, perturbation analyses in chemical transport models (CTMs), and CTM simulations driven by general circulation model (GCM) simulations of 21st-century climate change. We review these different approaches and their results. The future climate is expected to be more stagnant, due to a weaker global circulation and a decreasing frequency of mid-latitude cyclones. The observed correlation between surface ozone and temperature in polluted regions points to a detrimental effect of warming. Coupled GCM-CTM studies find that climate change alone will increase summertime surface ozone in polluted regions by 1-10 ppb over the coming decades, with the largest effects in urban areas and during pollution episodes. This climate penalty means that stronger emission controls will be needed to meet a given air quality standard. Higher water vapor in the future climate is expected to decrease the ozone background, so that pollution and background ozone have opposite sensitivities to climate change. The effect of climate change on particulate matter (PM) is more complicated and uncertain than for ozone. Precipitation frequency and mixing depth are important driving factors but projections for these variables are often unreliable. GCM-CTM studies find that climate change will affect PM concentrations in polluted environments by AE0.1-1 mg m À3 over the coming decades. Wildfires fueled by climate change could become an increasingly important PM source. Major issues that should be addressed in future research include the ability of GCMs to simulate regional air pollution meteorology and its sensitivity to climate change, the response of natural emissions to climate change, and the atmospheric chemistry of isoprene. Research needs to be undertaken on the effect of climate change on mercury, particularly in view of the potential for a large increase in mercury soil emissions driven by increased respiration in boreal ecosystems.
With harmful ozone concentrations tied to meteorological conditions, EPA investigates the U.S. air quality implications of a changing climate. Consequently, the 03 NAAQS are most often exceeded during summertime hot spells in places with large natural or anthropogenic precursor emissions (e.g., cities and suburban areas). Table 2 The average maximum or minimum temperature and/or changes in their spatial distribution and duration, leading to a change in reaction rate coefficients and the solubility of gases in cloud water solution;The frequency and pattern of cloud cover, leading to a change in reaction rates and rates of conversion of S02to acid deposition;The frequency and intensity of stagnation episodes or a change in the mixing layer, leading to more or less mixing of polluted air with background air;Background boundary layer concentrations of water vapor, hydrocarbons, NOx, and 03, leading to more or less dilution of polluted air in the boundary layer and altering the chemical transformation rates;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.