We investigate the augmentation of active imaging with passive polarimetric imaging for material classification. Experiments are conducted to obtain a multimodal dataset of lidar reflectivity and polarimetric thermal self-emission measurements against a diverse set of material types. Using the assumption that active lidar imaging can provide high-resolution threedimensional spatial information, a known surface orientation is utilized to enable higher fidelity classification. Machine learning is applied to the dataset of monostatic lidar unidirectional reflectivity and passive longwave infrared degree of linear polarization features for material classification. The hybrid sensor technique can classify materials with 91.1% accuracy even with measurement noise resulting in a signal-to-noise ratio of only 6 dB. The application of the proposed technique is applicable for the classification of hidden objects or could assist existing spatial-based object classification. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.