One of the major limitations to the use of fuel cell systems in vehicular transportation is the lack of hydrogen storage systems that have the required hydrogen storage density and moderate enthalpy of dehydrogenation. Organic liquid H(2) carriers that release H(2) endothermically are easier to handle with existing infrastructure because they are liquids, but they have low storage densities and their endothermicity consumes energy in the vehicle. On the other hand, inorganic solid H(2) carriers that release H(2) exothermically have greater storage densities but are unpumpable solids. This paper explores combinations of an endothermic carrier and an exothermic carrier, where the exothermic carrier provides some or all of the necessary heat required for dehydrogenation to the endothermic system, and the endothermic carrier serves as a solvent for the exothermic carrier. The two carriers can be either physically mixed or actually bonded to each other. To test the latter strategy, a number of chemically bound N-heterocycle:BH(3) adducts were synthesized and in turn tested for their ability to release H(2) by tandem hydrolysis of the BH(3) moiety and dehydrogenation of the heterocycle. To test the strategy of physically mixing two carriers, the hydrolysis of a variety of amine-boranes (H(3)N:BH(3), Me(2)HN:BH(3), Et(3)N:BH(3)) and the catalytic dehydrogenation of indoline were carried out together.
3-Methyl-1-(propyloxycarbonylmethyl)imidazolium octylsulfate 1a and 3-methyl-1-(pentyloxycarbonylmethyl)imidazolium octylsulfate 2a are ionic liquids that have previously been shown to be readily biodegradable in the CO2 headspace test (ISO 14593). In the present study, these ionic liquids were evaluated as reaction media for Diels–Alder and hydrogenation reactions. The comparison of the performance of these two designer solvents in these reactions with those conducted in other, non-biodegradable ionic liquids has demonstrated that they are comparable and viable solvents.
The tributylstannyl anion, Bu3Sn-, can be generated in imidazolium based ionic liquids from Me3SiSnBu3 and reacted with alpha,beta-unsaturated carbonyl compounds to afford 3-tributylstannylated products in good yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.