Vasoactive intestinal peptide (VIP) is present in the peripheral and the central nervous systems where it functions as a nonadrenergic, noncholinergic neurotransmitter or neuromodulator. Significant concentrations of VIP are present in the gastrointestinal tract, heart, lungs, thyroid, kidney, urinary bladder, genital organs and the brain. On a molar basis, VIP is 50-100 times more potent than acetylcholine as a vasodilator. VIP release in the body is stimulated by high frequency (10-20 Hz) nerve stimulation and by cholinergic agonists, serotonin, dopaminergic agonists, prostaglandins (PGE, PGD), and nerve growth factor. The VIP peptide combines with its receptor and dose-dependently activates adenylyl cyclase. The vasodilatory effect of VIP in different vascular tissues or species also may be due to increases in nitric oxide, cyclic GMP, and other signaling agents. In the heart, VIP immunoreactive nerve fibers are present not only in the epicardial coronary arteries and veins, but also the sinoatrial node, atrium, interatrial septum, atrioventricular node, intracardiac ganglia, and ventricles (right ventricle >> left ventricle). In the coronary arterial walls, VIP may contribute to the regulation of normal coronary vasomotor tone. In research animals and in humans, VIP, administered into the coronary artery or intravenously, increases the epicardial coronary artery cross-sectional area, decreases coronary vascular resistance, and significantly increases coronary artery blood flow. High frequency parasympathetic (vagal) nerve stimulation also releases endogenous VIP in the coronary vessels and heart and significantly increases coronary artery blood flow. In addition, the release of VIP in the heart is increased during coronary artery occlusion and during reperfusion where VIP may promote local blood flow and may have a free-radical scavenging effect. VIP also has a primary positive inotropic effect on cardiac muscle that is enhanced by its ability to facilitate ventricular-vascular coupling by reducing mean arterial pressure by 10-15%. In concentrations of 10(-8)-10(-5) mol, VIP augments developed isometric force and increases atrial and ventricular contractility. The presence of VIP-immunoreactive nerve fibers in and around the sinus and the atrioventricular nodes of mammals strongly suggests that this peptide can affect the heart rate. In this regard, endogenously released or exogenous VIP can significantly increase the heart rate and has a more potent effect on heart rate than does norepinephrine. The presence and significant cardiovascular effects of VIP in the heart suggests that this peptide is important in the regulation of coronary blood flow, cardiac contraction, and heart rate. Current investigations are defining the physiological role of VIP in the regulation of cardiovascular function.
Traumatic brain injury (TBI) occurs in response to an acute insult to the head and is recognized as a major risk factor for Alzheimer’s disease (AD). Indeed, recent studies have suggested a pathological overlap between TBI and AD, with both conditions exhibiting amyloid-beta (Aβ) deposits, tauopathy, and neuroinflammation. Additional studies involving animal models of AD indicate that some AD-related genotypic determinants may be critical factors enhancing temporal and phenotypic symptoms of TBI. Thus in the present study, we examined sub-acute effects of moderate TBI delivered by a gas-driven shock tube device in Aβ depositing Tg2576 mice. Three days later, significant increases in b-amyloid deposition, glycogen synthase-3 (GSK-3) activation, phospho-tau, and pro-inflammatory cytokines were observed. Importantly, peripheral treatment with the naturally occurring flavonoid, luteolin, significantly abolished these accelerated pathologies. This study lays the groundwork for a safe and natural compound that could prevent or treat TBI with minimal or no deleterious side effects in combat personnel and others at risk or who have experienced TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.