Nucleation in a supercooled or a supersaturated medium is a stochastic event, and hence statistical analyses are required for the understanding and prediction of such events. The development of reliable statistical methods for quantifying nucleation probability is highly desirable for applications where control of nucleation is required. The nucleation of gas hydrates in supercooled conditions is one such application. We describe the design and development of a high pressure automated lag time apparatus (HP-ALTA) for the statistical study of gas hydrate nucleation and growth at elevated gas pressures. The apparatus allows a small volume (≈150 μl) of water to be cooled at a controlled rate in a pressurized gas atmosphere, and the temperature of gas hydrate nucleation, T(f), to be detected. The instrument then raises the sample temperature under controlled conditions to facilitate dissociation of the gas hydrate before repeating the cooling-nucleation cycle again. This process of forming and dissociating gas hydrates can be automatically repeated for a statistically significant (>100) number of nucleation events. The HP-ALTA can be operated in two modes, one for the detection of hydrate in the bulk of the sample, under a stirring action, and the other for the detection of the formation of hydrate films across the water-gas interface of a quiescent sample. The technique can be applied to the study of several parameters, such as gas pressure, cooling rate and gas composition, on the gas hydrate nucleation probability distribution for supercooled water samples.
The recently developed high pressure automated lag time apparatus (HP-ALTA) was applied to the study of the formation and growth of interfacial gas hydrate films for three gases; methane (C1), 90% methane/10% propane gas mix (C1/C3), and synthetic gas mix (SGM). The effects of gas pressure and cooling rate were studied for each gas. Some degree of supercooling was observed in all cases. The probability distributions of formation temperature (T f) were often found to be bimodal, due to the formation of either gas hydrate or ice in sequential experimental runs. The width of the T f distribution of ice was about 3–4 K. In contrast, the width of the T f distribution of gas hydrates was about 20 K which reflects the importance of mass transfer (gas diffusion) processes in nucleation. Differences in hydrate and ice nucleation probability distributions were observed for different gases, reflecting differences in both thermodynamic equilibrium phase behavior and hydrate formation mechanisms. For all gases studied, T f generally increased with increasing gas pressure. A minimum threshold pressure for hydrate formation was observed, with magnitude decreasing in the order C1 > SGM > C1/C3. The effect of cooling rate on gas hydrate nucleation probability was also studied. The median of the distribution of T f (T f50) was found to decrease with an increased cooling rate, consistent with the increases in effective induction time as samples were cooled more slowly. Our results clearly highlight the value in collecting large data sets which can be used to assemble probability distributions when studying intrinsically stochastic processes such as gas hydrate nucleation and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.