Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more "pristine" groundwater from a well constructed in a lava tube at Kiholo Bay, were mixed with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student ttest, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows
a b s t r a c tRare earth element (REE) concentrations were analyzed in surface water and submarine groundwater within the Pettaquamscutt Estuary, located on the western edge of Narragansett Bay in Rhode Island. These water samples were collected along the salinity gradient of the estuary. Rare earth element concentrations in the majority of the groundwater samples are substantially higher than their concentrations in the surface waters. In particular, Nd concentrations in groundwater range from 0.43 nmol kg −1 up to 198 nmol kg −1 (mean ± SD = 42.1 ± 87.2 nmol kg −1 ), whereas Nd concentrations range between 259 pmol kg −1 and 649 pmol kg −1 (mean ± SD = 421 ± 149 pmol kg −1 ) in surface waters from the estuary, which is, on average, 100 fold lower than Nd in the groundwaters. Groundwater samples all exhibit broadly similar middle REE (MREE) enriched shalenormalized REE patterns, despite the wide variation in pH of these natural waters (4.87 ≤ pH ≤ 8.13). The similarity of the shale-normalized REE patterns across the observed pH range suggests that weathering of accessory minerals, such as apatite, and/or precipitation of LREE enriched secondary phosphate minerals controls groundwater REE concentrations and fractionation patterns. More specifically, geochemical mixing models suggest that the REE fractionation patterns of the surface waters may be controlled by REE phosphate mineral precipitation during the mixing of groundwater and stream water with incoming water from the Rhode Island Sound. The estimated SGD (Submarine Groundwater Discharge) of Nd to the Pettaquamscutt Estuary is 26 ± 11 mmol Nd day −1 , which is in reasonable agreement with the Nd flux of the primary surface water source to the estuary, the Gilbert Stuart Stream (i.e., 36 mmol day −1 ), and of the same order of magnitude for a site in Florida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.