Lipase-modified pH-responsive poly(N-isopropylacrylamide)-based microgels were synthesized. An optical device was subsequently fabricated by sandwiching the enzyme loaded responsive microgels between two thin Au layers, and their response to triolein, a model triglyceride, was investigated. The device's response depended on the triglyceride concentration, demonstrating its potential application as a triglyceride biosensor.
Ferrocene-modified poly(N-isopropylacrylamide)-based microgels were synthesized, characterized, and used to construct optical devices (etalons). The response of the microgels and etalons to HO was investigated, and we show that both the microgel diameter and the optical properties of the etalons depend on the solution concentration of HO from 0.6 to 35 mM. This behavior is a direct result of the oxidation of ferrocene, which influences the microgel diameter. This was also demonstrated by electrochemical-mediated oxidation/reduction of ferrocene using cyclic voltammetry. We go on to show that these materials could be used to monitor HO that is generated from enzymatic reactions. Specifically, we show that the HO generated from the oxidation of glucose catalyzed by glucose oxidase could be quantified. Finally, the devices can be reused multiple times via a regeneration process. This investigation illustrates the versatility of the etalon system to detect species of broad relevance and how they could potentially be used to quantify products of biological reactions.
Nanogels with a biomolecular coating (biocoating) were shown to be capable of triggered delivery of anticancer drug Doxorubicin. The biocoating was formed utilizing binding between glycogen and the tetra-functional lectin Concanavalin A, which can be triggered to disassemble (and release) upon exposure to glucose and changes in solution pH. We also show the nanogel's thermoresponsivity can be used to accelerate Doxorubicin release. Moreover, we showed that transferrin immobilized on the nanogel surface could accelerate nanogel uptake by cancer cells. In these experiments, we showed that Doxorubicin was able to be released to the nucleus of human liver cancer cell line (HepG2) within 3 h. Doxorubicin-loaded nanogels exhibit a strong growth inhibition ability toward HepG2. This investigation showcases how nanogel design and chemistry can be tuned to achieve useful biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.