Cation-exchange has been used to synthesize PbS/CdS core/shell colloidal quantum dots from PbS starting cores. These were then incorporated as the active material in solar cell test devices using a solution-based, air-ambient, layerby-layer spin coating process. We show that core/shell colloidal quantum dots can replace their unshelled counterparts with a similar band gap as the active layer in a solar cell device, leading to an improvement in open circuit voltage from 0.42 to 0.66 V. This improvement is attributed to a reduction in recombination as a result of the passivating shell. However, this increase comes at the expense of short circuit current by creating a barrier for transport. To overcome this, we first optimize the shell thickness by varying the conditions for cation-exchange to form the thinnest shell layer possible that provides sufficient surface passivation. Next, ligand exchange with a combination of halide and bifunctional organic molecules is used in conjunction with the core/shell strategy. Power conversion efficiencies of 5.6 ± 0.4% have been achieved with a simple heterojunction device architecture.
A nickel salt-urea-H2O ternary system has been developed for the large-scale synthesis of hierarchical α-Ni(OH)2 microspheres, the solid precursor for the subsequent topotactic transition to NiO upon calcination. In this facile synthetic system, hierarchical structure is self-assembled under the cooperative direction of urea and anions in nickel salts. Thus, simply tuning the Ni salts leads to the selective construction of urchin and flowerlike hierarchical α-Ni(OH)2 and NiO microspheres consisting of radial 1D nanowires and 2D nanoplates, respectively. The obtained NiO microspheres possessing accessible nanopores, excellent structural stability and large surface area up to 130 m(2)/g show promising electrochemical performance in anodic lithium storage for lithium-ion battery.
There is a huge interest in developing super-repellent surfaces for anti-fouling and heat-transfer applications. To characterize the wetting properties of such surfaces, the most common approach is to place a millimetric-sized droplet and measure its contact angles. The adhesion and friction forces can then be inferred indirectly using the Furmidge's relation. While easy to implement, contact angle measurements are semi-quantitative and cannot resolve wetting variations on a surface. Here, we attach a micrometric-sized droplet to an Atomic Force Microscope cantilever to directly measure adhesion and friction forces with nanonewton force resolutions. We spatially map the micron-scale wetting properties of superhydrophobic surfaces and observe the time-resolved pinning-depinning dynamics as a droplet detaches from or moves across the surface.
Lead sulfide colloidal quantum dot (CQD) solar cells demonstrate extremely high short-circuit currents (Jsc) and are making decent progress in power conversion efficiencies. However, the low fill factors (FF) and open-circuit voltages have to be addressed with urgency to prevent the stalling of efficiency improvements. This paper highlights the importance of improving hole extraction, which received much less attention as compared to the electron-accepting component of the device architecture (e.g., TiO2 or ZnO). Here, we show the use of semiconducting polymer poly(3-hexylthiophene-2,5-diyl) to create efficient CQD devices by improving hole transport, removing interfacial barriers, and minimizing shunt pathways, thus resulting in an overall improvement in device performance stemming from better Jsc and FF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.