Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a member of the bone morphogenetic protein family involved in de novo bone induction. Successful use of rhBMP-2 requires implantation with a biomaterial which can act as a scaffold for cell invasion for osteoinduction and retains rhBMP-2 at a site of implantation. This study was carried out to characterize rhBMP-2 pharmacokinetics from a variety of biomaterial carriers in a rat ectopic model. Retention of rhBMP-2 within carriers after 3 h was variable among the carriers (range, 75-10%), with collagenous sponges retaining the highest fraction of implanted dose. A gradual loss of rhBMP-2 was subsequently observed, the kinetics of which was strongly dependent on the implanted carrier. Collagenous carriers were observed to lose rhBMP-2 gradually from the implant site, whereas some of the mineral-based carriers retained a fraction of implanted rhBMP-2 within the implants. These differences in protein pharmacokinetics among carriers, in addition to their physicochemical nature, are expected to affect the biological activity of implanted rhBMP-2.
This study was carried out to determine the effect of recombinant human bone morphogenetic protein (rhBMP) pharmacokinetics (PK) on rhBMP-induced osteoinductive activity. It was our working hypothesis that the PK of a rhBMP significantly affects its osteoinductive activity. The PK of various rhBMPs (rhBMP-2, rhBMP-4, rhBMP-6, and chemically modified rhBMP-2) implanted with four biomaterial carries (Helistat, hDBM, Osteograf/N, and Dexon) was determined using (125)I-labeled proteins in the rat ectopic assay. A select combination of rhBMP and carriers then was evaluated in the rat ectopic assay for osteoinductive activity using a semi-quantitative histologic scoring system. The results indicate that initial protein retention is dependent on protein isoelectric point (pI); proteins with a higher pI yielded a higher implant retention. Subsequent PK was not strongly dependent on the pI or on the carrier. Because of the difference in early retention, the rhBMP-carrier combinations exhibited a >100-fold difference in implant-retained protein dose. When rhBMP-2 and rhBMP-4 were implanted with the carriers, more rhBMP-2 was retained in an implant, and the osteoinductive potency of rhBMP-2 typically was higher than rhBMP-4 at low implantation doses. We conclude that protein pI plays a significant role in the local retention of implanted rhBMP and that higher retention yields a higher osteoinductive activity.
Delivery of rhBMP-12 in several sponge carriers has the potential to accelerate healing of rotator cuff repairs. Accelerated repair may allow shorter rehabilitation and an earlier return to occupational and recreational activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.