Floating Treatment Wetland (FTW) systems are purpose-built devices designed to replicate the water treatment processes that occur in and around naturally occurring floating vegetated islands. FTWs can be used to improve the water quality of water storage ponds by contributing to water treatment processes through adhesion, filtration, nutrient uptake (direct use by plants), and sequestration. This paper presents the results of a twelve-month investigation into the pollution removal performance of a FTW receiving stormwater runoff from a 7.46 ha urban residential catchment. As anticipated, there was a high degree of variation in FTW treatment performance between individual rainfall events. Overall pollution removal performance was calculated to be 80% for Total Suspended Solids (TSS), 53% for Total Phosphorous (TP), and 17% for Total Nitrogen (TN) for a FTW footprint of 0.14% of the contributing catchment. TSS and TP concentrations were found to be significantly reduced after FTW treatment. The minimum FTW footprint to catchment size ratio required to achieve regulated nutrient removal rates was calculated to be 0.37%. Sum of loads calculations based on flow resulted in pollution load reductions of TSS 76%, TP 55%, and TN 17%. Pollution treatment performance (particularly for TN) was found to be affected by low influent concentrations, and highly-variable inflow concentrations. The study demonstrated that FTWs are an effective treatment solution for the removal of pollution from urban stormwater runoff.
Field monitoring of a stormwater treatment train has been underway between November 2013 and May 2015 at a townhouse development located at Ormiston, southeast Queensland. The research was undertaken to evaluate the effectiveness of a 200 micron mesh pit basket in a 900 square format and an 850 mm high media filtration cartridge system for removing total suspended solids and nutrients from stormwater runoff. The monitoring protocol was developed with Queensland University of Technology (QUT), reflecting the Auckland Regional Council Proprietary Device Evaluation Protocol (PDEP) and United States Urban Stormwater BMP Performance Monitoring Manual with some minor improvements reflecting local conditions. During the 18 month period, more than 30 rain events have occurred, of which nine comply with the protocol. The Efficiency Ratio (ER) observed for the treatment devices are 32% total suspended solids (TSS), 37% for total phosphorus (TP) and 38% total nitrogen (TN) for the pit basket, and an Efficiency Ratio of 87% TSS, 55% TP and 42% TN for the cartridge filter. The performance results on nine events have been observed to be significantly different statistically (p < 0.05) for the filters but not the pit baskets. The research has also identified the significant influence of analytical variability on performance results, specifically when influent concentrations are near the limits of detection.
OPEN ACCESSWater 2015, 7 4497
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.