Nonparametric data from multi-factor experiments arise often in human-computer interaction (HCI). Examples may include error counts, Likert responses, and preference tallies. But because multiple factors are involved, common nonparametric tests (e.g., Friedman) are inadequate, as they are unable to examine interaction effects. While some statistical techniques exist to handle such data, these techniques are not widely available and are complex. To address these concerns, we present the Aligned Rank Transform (ART) for nonparametric factorial data analysis in HCI. The ART relies on a preprocessing step that "aligns" data before applying averaged ranks, after which point common ANOVA procedures can be used, making the ART accessible to anyone familiar with the F-test. Unlike most articles on the ART, which only address two factors, we generalize the ART to N factors. We also provide ARTool and ARTweb, desktop and Web-based programs for aligning and ranking data. Our re-examination of some published HCI results exhibits advantages of the ART.
BackgroundMobile phone sensors can be used to develop context-aware systems that automatically detect when patients require assistance. Mobile phones can also provide ecological momentary interventions that deliver tailored assistance during problematic situations. However, such approaches have not yet been used to treat major depressive disorder.ObjectiveThe purpose of this study was to investigate the technical feasibility, functional reliability, and patient satisfaction with Mobilyze!, a mobile phone- and Internet-based intervention including ecological momentary intervention and context sensing.MethodsWe developed a mobile phone application and supporting architecture, in which machine learning models (ie, learners) predicted patients’ mood, emotions, cognitive/motivational states, activities, environmental context, and social context based on at least 38 concurrent phone sensor values (eg, global positioning system, ambient light, recent calls). The website included feedback graphs illustrating correlations between patients’ self-reported states, as well as didactics and tools teaching patients behavioral activation concepts. Brief telephone calls and emails with a clinician were used to promote adherence. We enrolled 8 adults with major depressive disorder in a single-arm pilot study to receive Mobilyze! and complete clinical assessments for 8 weeks.ResultsPromising accuracy rates (60% to 91%) were achieved by learners predicting categorical contextual states (eg, location). For states rated on scales (eg, mood), predictive capability was poor. Participants were satisfied with the phone application and improved significantly on self-reported depressive symptoms (betaweek = –.82, P < .001, per-protocol Cohen d = 3.43) and interview measures of depressive symptoms (betaweek = –.81, P < .001, per-protocol Cohen d = 3.55). Participants also became less likely to meet criteria for major depressive disorder diagnosis (bweek = –.65, P = .03, per-protocol remission rate = 85.71%). Comorbid anxiety symptoms also decreased (betaweek = –.71, P < .001, per-protocol Cohen d = 2.58).ConclusionsMobilyze! is a scalable, feasible intervention with preliminary evidence of efficacy. To our knowledge, it is the first ecological momentary intervention for unipolar depression, as well as one of the first attempts to use context sensing to identify mental health-related states. Several lessons learned regarding technical functionality, data mining, and software development process are discussed.Trial Registration Clinicaltrials.gov NCT01107041; http://clinicaltrials.gov/ct2/show/NCT01107041 (Archived by WebCite at http://www.webcitation.org/60CVjPH0n)
Large wall-sized displays are becoming prevalent. Although researchers have articulated qualitative benefits of group work on large displays, little work has been done to quantify the benefits for individual users. In this article we present four experiments comparing the performance of users working on a large projected wall display to that of users working on a standard desktop monitor. In these experiments, we held the visual angle constant by adjusting the viewing distance to each of the displays. Results from the first two experiments suggest that physically large displays, even when viewed at identical visual angles as smaller ones, help users perform better on mental rotation tasks. We show through the experiments how these results may be attributed, at least in part, to large displays immersing users within the problem space and biasing them into using more efficient cognitive strategies. In the latter two experiments, we extend these results, showing the presence of these effects with more complex tasks, such as 3D navigation and mental map formation and memory. Results further show that the effects of physical display size are independent of other factors that may induce immersion, such as interactivity and mental aids within the virtual environments. We conclude with a general discussion of the findings and possibilities for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.