While it is known that the aorta stiffens with location and age, little is known about the underlying mechanisms that govern these alterations. The purpose of this study was to investigate the relationship between the anisotropic biomechanical behavior and extracellular matrix microstructure of the human aorta and quantify how each changes with location and age. A total of 207 specimens were harvested from 5 locations (ascending n = 33, arch n = 38, descending n = 54, suprarenal n = 52, and abdominal n = 30) of 31 autopsy donor aortas (aged 3 days to 93 years). Each specimen underwent planar biaxial testing in order to derive quantitative biomechanical endpoints of anisotropic stiffness and compliance. Quantitative measures of fiber alignment and degree of fiber alignment were also generated on the same samples using a small-angle light scattering (SALS) technique. Circumferential and axial stiffening occurred with age and increased from the proximal to distal aorta, and the abdominal region was found to be more stiff than all others (p ≤ 0.006). Specimens from donors aged 61 and above were drastically more stiff than younger specimens (p < 0.001) and demonstrated greater circumferential compliance and axial stiffening (p < 0.001). Fiber direction for all ages and locations was predominantly circumferential (p < 0.001), and the degree of fiber alignment was found to increase with age (p < 0.001). Our results demonstrate that the aorta becomes more biomechanically and structurally anisotropic after age 60; with significant changes occurring preferentially in the abdominal aorta, these changes may play an important role in the predisposition of disease formation (e.g., aneurysm) in this region with age.
An intraluminal thrombus (ILT) forms in the majority of abdominal aortic aneurysms (AAAs). While the ILT has traditionally been perceived as a byproduct of aneurysmal disease, the mechanical environment within the ILT may contribute to the degeneration of the aortic wall by affecting biological events of cells embedded within the ILT. In this study, the drained secant modulus (E 5 ∼ modulus at 5% strain) of ILT specimens (luminal, medial, and abluminal) procured from elective open repair was measured and compared using unconfined compression. Five groups of fibrin-based thrombus mimics were also synthesized by mixing various combinations of fibrinogen, thrombin, and calcium. Drained secant moduli were compared to determine the effect of the components' concentrations on mimic stiffness. The stiffness of the mimics was also compared to the native ILT. Preliminary data on the water content of the ILT layers and mimics was measured. It was found that the abluminal layer (E 5 = 19.3 kPa) is stiffer than the medial (2.49 kPa) and luminal (1.54 kPa) layers, both of which are statistically similar. E 5 of the mimics (0.63, 0.22, 0.23, 0.87, and 2.54 kPa) is dependent on the concentration of all three components: E 5 decreases with a decrease in fibrinogen (60 to 20 and 20 to 15 mg/ml) and a decrease in thrombin (3 to 0.3 units/ml), and E 5 increases with a decrease in calcium (0.1 to 0.01 M). E 5 from two of the mimics were not statistically different than the medial and luminal layers of ILT. A thrombus mimic with similar biochemical components, structure, and mechanical properties as native ILT would provide an appropriate test medium for AAA mechanobiology studies.
Murine models of disease are a powerful tool for researchers to gain insight into disease formation, progression, and therapies. The biomechanical indicators of diseased tissue provide a unique insight into some of these murine models, since the biomechanical properties in scenarios such as aneurysm and Marfan syndrome can dictate tissue failure and mortality. Understanding the properties of the tissue on the macroscopic scale has been shown to be important, as one can then understand the tissue’s ability to withstand the high stresses seen in the cardiac pulsatile cycle. Alterations in the biomechanical response can foreshadow prospective mechanical failure of the tissue. These alterations are often seen on the microstructural level, and obtaining detailed information on such changes can offer a better understanding of the phenomena seen on the macroscopic level. Unfortunately, mouse models present problems due to the size and delicate features in the mechanical testing of such tissues. In addition, some smaller arteries in large-animal studies (e.g., coronary and cerebral arteries) can present the same issues, and are sometimes unsuitable for planar biaxial testing. The purpose of this paper is to present a robust method for the investigation of the mechanical properties of small arteries and the classification of the microstructural orientation and degree of fiber alignment. This occurs through the cost-efficient modification of a planar biaxial tester that works in conjunction with a two-photon nonlinear microscope. This system provides a means to further investigate how microstructure and mechanical properties are modified in diseased transgenic animals where the tissue is in small tube form. Several other hard-to-test tubular specimens such as cerebral aneurysm arteries and atherosclerotic coronary arteries can also be tested using the described modular device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.