Several bacterial and plant enterotoxin B subunit-islet autoantigen fusion proteins were compared for their ability to serve as islet autoantigen carriers and adjuvants for reduction of pancreatic islet inflammation associated with type 1 diabetes. The cholera toxin B subunit (CTB), the heat-labile toxin B subunit from enterotoxigenic Escherichia coli (LTB), the Shigella toxin B subunit (STB), and the plant toxin ricin B subunit (RTB) were genetically linked to the islet autoantigens proinsulin (INS) and glutamic acid decarboxylase (GAD). The adjuvant-autoantigen gene fusions were transferred to a bacterial expression vector and the corresponding fusion proteins synthesized in E. coli. The purified adjuvant-autoantigen proteins were fed to 5-wk-old nonobese diabetic (NOD) mice once a week for 4 wk. Histological examination of pancreatic islets isolated from inoculated mice showed significant levels of insulitis reduction in comparison with uninoculated mice. The ratio of serum anti-INS and anti-GAD IgG2c to IgG1 antibody isotype titers increased in all ligand-autoantigen inoculated animal groups, suggesting an increase in effector Th2 lymphocytes in B subunit-mediated insulitis suppression. The results of these experiments indicate that bacterial and plant enterotoxin B subunit ligand-autoantigens enhance insulitis reduction in NOD mice. This research prompts further exploration of a multiadjuvant/autoantigen co-delivery strategy that may facilitate type 1 diabetes prevention and suppression in animals and humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.