Viral vectors are excellent tools for studying gene function in the brain, although a limitation has been the ability to effectively target transgene expression to specific neuronal populations. This generally cannot be overcome by the use of neuron-specific promoters, as most are too large to be used with current viral vectors and expression from these promoters is often relatively weak. We therefore developed a composite expression cassette, comprising 495 bp of the weak human SYN1 (synapsin-1) promoter and 800 bp of the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Studies in hippocampal cultures, organotypic cultures, and in vivo showed that the 3' addition of the WPRE to the SYN1 element greatly increased enhanced green fluorescent protein expression levels with no loss of neuronal specificity. In vivo studies also showed that transgene expression was enhanced with no loss of neuronal specificity in dentate-gyrus neurons for at least 6 weeks following transfection. Therefore, unlike most powerful promoter systems, which mediate expression in neurons and glia, this SYN1-WPRE cassette can target powerful long-term transgene expression to central nervous system neurons when delivered at relatively low titers of adenovirus. Its use should therefore facilitate both gene therapy studies and investigations of neuronal gene function.
We have further developed a tetracycline-regulatable neuron-specific expression system such that it can now be used at low titres with no loss of transgene expression or ability to regulate transgene expression. It should therefore be of significant value to studies investigating neuronal gene function and to those seeking to develop effective neuronal gene therapy strategies.
In this study we have used a molecular approach to manipulate CREB gene expression to study its role in the regulation of neuronal cell death. To achieve this, adenoviral (Ad) vectors encoding EGFP, CREB, and a powerful CREB dominant-negative, known as A-CREB were constructed. The over-expression of CREB but not A-CREB was found to protect primary hippocampal neurons from staurosporine-induced apoptosis, glutamate induced excitotoxicity and exposure to an in vitro ischaemic stress. Hence, manipulating CREB-regulated pathways may provide a means of delaying or preventing the neuronal cell death associated with ischaemic related injury, and in neurodegenerative diseases such as Huntington's and Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.