The purposes of this paper were to discuss the perceived benefits of inserts and orthotics for sport activities and to propose a new concept for inserts and orthotics. There is evidence that inserts or orthotics reduce or prevent movement-related injuries. However, there is limited knowledge about the specific functioning an orthotic or insert provides. The same orthotic or insert is often proposed for different problems. Changes in skeletal movement due to inserts or orthotics seem to be small and not systematic. Based on the results of a study using bone pins, one may question the idea that a major function of orthotics or inserts consists in aligning the skeleton. Impact cushioning with shoe inserts or orthotics is typically below 10%. Such small reductions might not be important for injury reduction. It has been suggested that changes in material properties might produce adjustments in the muscular response of the locomotor system. The foot has various sensors to detect input signals with subject specific thresholds. Subjects with similar sensitivity threshold levels seem to respond in their movement pattern in a similar way. Comfort is an important variable. From a biomechanical point of view, comfort may be related to fit, additional stabilizing muscle work, fatigue, and damping of soft tissue vibrations. Based on the presented evidence, the concept of minimizing muscle work is proposed when using orthotics or inserts. A force signal acts as an input variable on the shoe. The shoe sole acts as a first filter, the insert or orthotic as a second filter, the plantar surface of the foot as a third filter for the force input signal. The filtered information is transferred to the central nervous system that provides a subject specific dynamic response. The subject performs the movement for the task at hand. For a given movement task, the skeleton has a preferred path. If an intervention supports/counteracts the preferred movement path, muscle activity can/must be reduced/increased. Based on this concept, an optimal insert or orthotic would reduce muscle activity, feel comfortable, and should increase performance.
Shoe inserts of different shape and material that are comfortable are able to decrease injury frequency. The results of this study showed that subject specific characteristics influence comfort perception of shoe inserts.
In recent years, increasing the midsole bending stiffness (MBS) of running shoes by embedding carbon fibre plates in the midsole resulted in many world records set during long-distance running competitions. Although several theories were introduced to unravel the mechanisms behind these performance benefits, no definitive explanation was provided so far. This study aimed to investigate how the function of the gastrocnemius medialis (GM) muscle and Achilles tendon is altered when running in shoes with increased MBS. Here, we provide the first direct evidence that the amount and velocity of GM muscle fascicle shortening is reduced when running with increased MBS. Compared to control, running in the stiffest condition at 90% of speed at lactate threshold resulted in less muscle fascicle shortening (p = 0.006, d = 0.87), slower average shortening velocity (p = 0.002, d = 0.93) and greater estimated Achilles tendon energy return (p ≤ 0.001, d = 0.96), without a significant change in GM fascicle work (p = 0.335, d = 0.40) or GM energy cost (p = 0.569, d = 0.30). The findings of this study suggest that running in stiff shoes allows the ankle plantarflexor muscle–tendon unit to continue to operate on a more favourable position of the muscle’s force–length–velocity relationship by lowering muscle shortening velocity and increasing tendon energy return.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.