Abstract-Backscatter radio is proposed for sensor networks. In that way, the transmitter for each sensor is simplified to a transistor connected to an antenna and therefore, the cost for each sensor's communicator becomes negligible, while energy used for wireless communication per sensor is minimized. A software-defined transceiver is built to transmit a carrier, receive the reflections from various sensors and extract their transmitted messages. This work presents a thorough model of the backscatter radio link, the system architecture and a set of data extraction techniques for each sensor's information, testing in practice a sensor communicating through backscatter at a range of approximately 15 meters indoors, with 5 milliwatt transmission power at 10 bits per second. This work highlights the idiosyncrasies of the backscatter channel and provides a new communication perspective in the fertile area of scalable sensor networks, especially when low bit-rate, ultra-low cost sensors are required.Index Terms-RFID, fading channel, bit error rate, wireless sensor networks.
Construction toys are a superb medium for creating geometric models. We argue that such toys, suitably instrumented or sensed, could be the inspiration for a new generation of easy-to-use, tangible modeling systems-especially if the tangible modeling is combined with graphical-interpretation techniques for enhancing nascent models automatically. The three key technologies needed to realize this idea are embedded computation, vision-based acquisition, and graphical interpretation. We sample these technologies in the context of two novel modeling systems: physical building blocks that self-describe, interpret, and decorate the structures into which they are assembled; and a system for scanning, interpreting, and animating clay figures.
We explore the design space of a two-sided interactive touch table, designed to receive touch input from both the top and bottom surfaces of the table. By combining two registered touch surfaces, we are able to offer 1 new dimension of input for co-located collaborative groupware. This design accomplishes the goal of increasing the relative size of the input area of a touch table while maintaining its direct-touch input paradigm. We describe the interaction properties of this two-sided touch table, report the results of a controlled experiment examining the precision of user touches to the underside of the table, and a series of application scenarios we developed for use on inverted and two-sided tables. finally, we present a list of design recommendations based on our experiences and observations with inverted and two-sided tables. ACM Symposium on User Interface Software & Technology (UIST)This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. ABSTRACTWe explore the design space of a two-sided interactive touch table, designed to receive touch input from both the top and bottom surfaces of the table. By combining two registered touch surfaces, we are able to offer a new dimension of input for co-located collaborative groupware. This design accomplishes the goal of increasing the relative size of the input area of a touch table while maintaining its direct-touch input paradigm. We describe the interaction properties of this two-sided touch table, report the results of a controlled experiment examining the precision of user touches to the underside of the table, and a series of application scenarios we developed for use on inverted and two-sided tables. Finally, we present a list of design recommendations based on our experiences and observations with inverted and two-sided tables.
M i t s u b i s h i Electric R e s e a r c h L a b o r a t o r i e s201 B r o a d w a y C a m b r i d g e , M A 0 2 1 3 9 U S A + 1 -6 1 7 -6 2 1 -7 5 0 0 {dietz, leigh}@merl, com ABSTRACT A technique for creating a touch-sensitive input device is proposed which allows multiple, simultaneous users to interact in an intuitive fashion. Touch location information is determined independently for each user, allowing each touch on a common surface to be associated with a particular user. The surface generates location dependent, modulated electric fields which are capacitively coupled through the users to receivers installed in the work environment. We describe the design of these systems and their applications. Finally, we present results we have obtained with a small prototype device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.