Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 to 10 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs.
Large explosive eruptions are generally rare, random events in the history of any particular volcano, volcanic area, or worldwide. In the Taupo Volcanic Zone, New Zealand, temporal clustering of eruptions occurs on a <1 yr to ~300 k.y. basis, which implies that some controls lead to nonrandom eruption timing. We describe two closely paired large Taupo Volcanic Zone eruptions dated at ca. 240 ka that terminated a large-scale cluster of 7 caldera-forming and >15 smaller eruptions over a total ~100 k.y. period. After a precursor eruption from a nearby source (and a break of years to decades), these paired eruptions in turn generated a wet ashfall deposit and a dry pumice-fall deposit; the Mamaku ignimbrite (>145 km 3 magma); a fi ne-grained vitric ash-fall deposit; then the Ohakuri ignimbrite (>100 km 3 magma). Rotorua and Ohakuri, spaced ~30 km apart, are the inferred collapse calderas associated with the Mamaku and Ohakuri ignimbrites, respectively. The early wet and dry fall deposits came from southerly sources, close to or within the subsequent Ohakuri caldera, while the fi ne-grained vitric ash is inferred to represent a co-ignimbrite ash from the Mamaku ignimbrite. At its southwest margin, the Mamaku ignimbrite overlies, but is also intercalated within and then overlain by, the pumice fall deposit, demonstrating that at least two widely spaced vents were active simultaneously for part of the eruption sequence. The post-Mamaku vitric ash-fall deposit underwent only trivial reworking prior to emplacement of the Ohakuri ignimbrite. This and other fi eld evidence imply continuity, or time gaps of only days to months, in the whole paired sequence. Syneruptive volcanotectonic faulting may have permitted accumulation of >400 m of nonwelded Ohakuri ignimbrite through graben subsidence. Posteruptive faulting within years to decades of the eruption produced an ~300 m extra-caldera offset of the Mamaku ignimbrite and collateral subsidence of a >40 km 2 area immediately south of Rotorua caldera. Temporal linkages between ignimbrite eruptions and graben subsidence, the NNE-SSW alignment of associated faulting between the Rotorua and Ohakuri calderas, and the eruption-related subsidence indicate a tectonic control on volcanism associated with Taupo Volcanic Zone rifting processes. Statistical forecasts of the frequency of large-volume explosive events based on averages may be inaccurate because of tectonic triggering effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.