This paper presents a logical approach to ensure successful nuclear magnetic resonance (NMR) logging for fluid-characterization purposes. Numerous examples are shown in a three-stage process consisting ofplanning,processing and interpretation, andvalidation and integration. First, modeling is performed to assess the NMR contrast, using any available information concerning anticipated fluid types. Knowledge of downhole conditions also allows the estimation of the NMR signal-to-noise ratio (SNR) from which the sensitivity and statistical error can be evaluated. The outcome of the planning process is a suite of NMR pulse sequences that optimizes resolution of the different fluids and minimizes error with the shortest possible acquisition time. Interpreting fluid-characterization NMR logs is relatively straightforward when the fluids have large NMR contrast and obey the standard correlations. However, dissolved gas, wettability variations, internal field gradients, and restricted diffusion can cause deviations from model behavior and have significant effects on NMR relaxation data. These effects need to be recognized and accounted for. To gain insights into the NMR-based fluid evaluation process, we have developed a model-independent technique that gives various sets of D-T1-T2 maps. The maps are analogous to the crossplots commonly used in log interpretation practices and are indispensable in the interpretation of the data. We also explain quantitative interpretation techniques from D-T2 maps. Integrating NMR fluid-characterization results with other information and openhole logs constitutes the final step. As with any technique, results need to be crosschecked with other log data for consistency. The answer gives a water saturation that can be verified with other tools and techniques such as the dielectric log, resistivity logs, and the density magnetic resonance technique method. Introduction Current methods to analyze fluids using suites of NMR measurements employ model-based inversions. Two examples of the forward-modeling approach are the MACNMR1 and Magnetic Resonance Fluid (MRF) characterization methods.2 The MRF technique is based on physical laws that are calibrated empirically to account for the downhole fluid NMR responses. By using realistic fluid models, MRF aims to minimize the number of adjustable parameters to be compatible with the information content of typical NMR log data. Since the model parameters are by design related to the individual fluid volumes and properties, determination of the parameter values (i.e., data-fitting) leads directly to estimates of the fluids petrophysical quantities. Any forward-model approach relies on the validity of the fluid models employed. In "non-ideal" situations where the fluid NMR response deviates from the model behavior (such as internal gradient, oil-wet rocks, restricted diffusion etc.), these techniques may lead to erroneous answers. In some circumstances, "non-ideal" responses may be identified by a poor fit-quality of the echo data, in which case the fluid models can be adjusted by modifying the appropriate model parameters. However, it may not be obvious which element of the fluid model should be modified and what modification is needed to get the desired answer. The maximum entropy principle (MEP) method is a model-independent inversion that provides a simple graphical representation of NMR data for fluid analysis in all environments. The graphical representations (i.e., multi-dimensional distributions) can themselves be used directly for interpretation or, alternatively, they may be used to guide the selection of parameters for model-based processing such as MRF. It is important to recognize that the MEP technique as well as the methods to interpret D-T2 maps are applicable to both CPMG (Carr, Purcell, Meiboom, and Gill) and DE (diffusion editing)3 measurements.
Nuclear magnetic resonance (NMR) T1-T2 logs from several west Texas wells over various formation layers were acquired to assess the values of NMR logging for fluid typing and saturation quantification in tight mudstone reservoirs. To quantify fluids in those low-porosity formations, high-density NMR data with adequate signal-to-noise ratio (SNR) are essential, and an inversion algorithm capable of resolving fluids on T1-T2 map is needed. These requirements are achieved with multifrequency data acquisition having a short interecho spacing (TE) for all frequencies, which yields a total of 15,400 echoes per depth in a single NMR pulse sequence cycle. This large data density enables less vertical averaging to be needed in both 1D and 2D processing, which is essential for capturing the porosity and fluid volume variation in these layered formations. The use of the inversion-forward modeling-inversion (IFMI) method improves the spectral resolution of the relaxation time distribution and T1-T2 map resolution because the method adequately addresses the effect of gradient differences in NMR responses in multifrequency data acquisition. 2D T1-T2 map fluid resolution of downhole stations and moving logs are compared to determine the minimal stacking required for fluid discrimination. The porosity and water volume are compared with those of conventional and mineralogy logs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.