Context Urbanisation places increasing stress on ecosystem services; however existing methods and data for testing relationships between service delivery and urban landscapes remain imprecise and uncertain. Unknown impacts of scale are among several factors that complicate research. This study models ecosystem services in the urban area comprising the towns of Milton Keynes, Bedford and Luton which together represent a wide range of the urban forms present in the UK. Objectives The objectives of this study were to test (1) the sensitivity of ecosystem service model outputs to the spatial resolution of input data, and (2) whether any resultant scale dependency is constant across different ecosystem services and model approaches (e.g. stock-versus flow-based).Methods Carbon storage, sediment erosion, and pollination were modelled with the InVEST framework using input data representative of common coarse (25 m) and fine (5 m) spatial resolutions. Results Fine scale analysis generated higher estimates of total carbon storage (9.32 vs. 7.17 kg m -2 ) and much lower potential sediment erosion estimates (6.4 vs. 18.1 Mg km -2 year -1 ) than analyses conducted at coarser resolutions; however coarse-scale analysis estimated more abundant pollination service provision. Conclusions Scale sensitivities depend on the type of service being modelled; stock estimates (e.g. carbon storage) are most sensitive to aggregation across scales, dynamic flow models (e.g. sediment erosion) are most sensitive to spatial resolution, and ecological process models involving both stocks and dynamics (e.g. pollination) are sensitive to both. Care must be taken to select model data appropriate to the scale of inquiry.
There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0–10 cm), but in deeper soils (11–20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents’ site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.
Context Landscape metrics represent powerful tools for quantifying landscape structure, but uncertainties persist around their interpretation. Urban settings add unique considerations, containing habitat structures driven by the surrounding built-up environment. Understanding urban ecosystems, however, should focus on the habitats rather than the matrix. Objectives We coupled a multivariate approach with landscape metric analysis to overcome existing shortcomings in interpretation. We then explored relationships between landscape characteristics and modelled ecosystem service provision. Methods We used principal component analysis and cluster analysis to isolate the most effective measures of landscape variability and then grouped habitat patches according to their attributes, independent of the surrounding urban form. We compared results to the modelled provision of three ecosystem services. Seven classes resulting from cluster analysis were separated primarily on patch area, and secondarily by measures of shape complexity and inter-patch distance.Results When compared to modelled ecosystem services, larger patches up to 10 ha in size consistently stored more carbon per area and supported more pollinators, while exhibiting a greater risk of soil erosion. Smaller, isolated patches showed the opposite, and patches larger than 10 ha exhibited no additional areal benefit. Conclusions Multivariate landscape metric analysis offers greater confidence and consistency than analysing landscape metrics individually. Independent classification avoids the influence of the urban matrix surrounding habitats of interest, and allows patches to be grouped according to their own attributes. Such a grouping is useful as it may correlate more strongly with the characteristics of landscape structure that directly affect ecosystem function.
Context Connectivity is fundamental to understanding how landscape form influences ecological function. However, uncertainties persist due to the difficulty and expense of gathering empirical data to drive or to validate connectivity models, especially in urban areas, where relationships are multifaceted and the habitat matrix cannot be considered to be binary. Objectives This research used circuit theory to model urban bird flows (i.e. 'current'), and compared results to observed abundance. The aims were to explore the ability of this approach to predict wildlife flows and to test relationships between modelled connectivity and variation in abundance. Methods Circuitscape was used to model functional connectivity in Bedford, Luton/Dunstable, and Milton Keynes, UK, for great tits (Parus major) and blue tits (Cyanistes caeruleus), drawing parameters from published studies of woodland bird flows in urban environments. Model performance was then tested against observed abundance data. Results Modelled current showed a weak yet positive agreement with combined abundance for P. major and C. caeruleus. Weaker correlations were found for other woodland species, suggesting the approach may be expandable if re-parameterised. Conclusions Trees provide suitable habitat for urban woodland bird species, but their location in large, contiguous patches and corridors along barriers also facilitates connectivity networks throughout the urban matrix. Urban connectivity studies are well-served by the advantages of circuit theory approaches, and benefit from the empirical study of wildlife flows in these landscapes to parameterise this type of modelling more explicitly. Such results can prove informative and beneficial in designing urban green space and new developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.