Image-guided small animal radiation research platforms allow more precise radiation treatment. Commercially available small animal X-ray irradiators are often equipped with a CT/cone-beam CT (CBCT) component for target guidance. Besides having poor soft-tissue contrast, CBCT unfortunately cannot provide molecular information due to its low sensitivity. Hence, there are extensive efforts to incorporate a molecular imaging component besides CBCT on these radiation therapy platforms. As an extension of these efforts, here we present a theranostic fluorescence tomography/CBCT-guided irradiator platform that provides both anatomical and molecular guidance, which can overcome the limitations of stand-alone CBCT. The performance of our hybrid system is validated using both tissue-like phantoms and mice ex vivo. Both studies show that fluorescence tomography can provide much more accurate quantitative results when CBCT-derived structural information is used to constrain the inverse problem. The error in the recovered fluorescence absorbance reduces nearly 10-fold for all cases, from approximately 60% down to 6%. This is very significant since high quantitative accuracy in molecular information is crucial to the correct assessment of the changes in tumor microenvironment related to radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.