Taking the convex hull of a curve is a natural construction in computational geometry. On the other hand, path signatures, central in stochastic analysis, capture geometric properties of curves, although their exact interpretation for levels larger than two is not well understood. In this paper, we study the use of path signatures to compute the volume of the convex hull of a curve. We present sufficient conditions for a curve so that the volume of its convex hull can be computed by such formulae. The canonical example is the classical moment curve, and our class of curves, which we call cyclic, includes other known classes such as d-order curves and curves with totally positive torsion. We also conjecture a necessary and sufficient condition on curves for the signature volume formula to hold. Finally, we give a concrete geometric interpretation of the volume formula in terms of lengths and signed areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.