CRISPR/Cas9-based gene knockout in animal cells, particularly in teleosts, has proven to be very efficient with regards to mutation rates, but the precise insertion of exogenous DNA or gene knock-in via the homology-directed repair (HDR) pathway has seldom been achieved outside of the model organisms. Here, we succeeded in integrating with high efficiency an exogenous alligator cathelicidin gene into a targeted non-coding region of channel catfish (Ictalurus punctatus) chromosome 1 using two different donor templates (synthesized linear dsDNA and cloned plasmid DNA constructs). We also tested two different promoters for driving the gene, zebrafish ubiquitin promoter and common carp β-actin promoter, harboring a 250-bp homologous region flanking both sides of the genomic target locus. Integration rates were found higher in dead fry than in live fingerlings, indicating either off-target effects or pleiotropic effects. Furthermore, low levels of mosaicism were detected in the tissues of P1 individuals harboring the transgene, and high transgene expression was observed in the blood of some P1 fish. This can be an indication of the localization of cathelicidin in neutrophils and macrophage granules as also observed in most antimicrobial peptides. This study marks the first use of CRISPR/Cas9 HDR for gene integration in channel catfish and may contribute to the generation of a more efficient system for precise gene integration in catfish and other aquaculture species, and the development of gene-edited, disease-resistant fish.
The CRISPR/Cas9 platform holds promise for modifying fish traits of interest as a precise and versatile tool for genome manipulation. To reduce introgression of transgene and control reproduction, catfish species have been studied for upscaled disease resistance and intervening of reproduction to lower the potential environmental risks of introgression of escapees' as transgenic animals. Taking advantage of the CRISPR/Cas9-mediated system, we succeeded in integrating the cathelicidin gene from an alligator (Alligator sinensis; As-Cath) into the target luteinizing hormone (LH) locus of channel catfish (Ictalurus punctatus) using two delivery systems assisted by double-stranded DNA (dsDNA) and single-stranded oligodeoxynucleotides (ssODNs), respectively. In this study, high knock-in (KI) efficiency (22.38%, 64/286) but low on-target was achieved using the ssODN strategy, whereas adopting a dsDNA as the donor template led to an efficient on-target KI (10.80%, 23/213). On-target KI of As-Cath was instrumental in establishing the LH knockout (LH--As-Cath+) catfish line, which displayed heightened disease resistance and reduced fecundity compared to the wild-type sibling fish. Furthermore, implanting with HCG and LHRHa can restore the fecundity, spawnability and hatchability of the new transgenic fish line. Overall, we replaced the LH gene with an alligator cathelicidin transgene and then administered hormone therapy to gain complete reproductive control of disease-resistant transgenic catfish in an environmentally sound manner. This strategy not only effectively improves the consumer-valued traits, but also guards against genetic contamination. This is a breakthrough in aquaculture genetics to confine fish reproduction and prevent the establishment of transgenic or domestic genotypes in the natural environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.