Gold nanoparticle (GNP) aggregation has a strong influence on the plasmonic resonance and hence the effectiveness in various photothermal applications. In relation to this, a comprehensive numerical model is developed to simulate and characterize the GNP aggregation process at various particle volume fractions and base fluid pH levels. Computational fluid dynamics techniques are utilized to model the base fluid, whereas discrete phase modeling is adopted in determining the nanoparticle trajectories. Two-way coupling is implemented to handle the particle-fluid interactions. Discrete dipole approximation approach is utilized to further examine the absorption and scattering efficiency of various GNP aggregate structures. At lower particle volume fraction, short chain-like structures are formed in the particle aggregation process, with a more complex interconnected "particle network" structure formed at higher particle volume fractions. With the three base fluid pH levels investigated, GNP aggregates are more compact with larger fractal dimensions and higher mean coordination numbers at pH = 3.5, whereas a more "loose" structure formed at pH = 6.7 and 9.4 because of larger electrostatic repulsive forces as a result of changes in the zeta potential and Debye length of the GNPs. Among the typical GNP aggregate structures characterized in this paper, the chain-like tetramer demonstrates the highest absorption efficiency of 1.83 at 700 nm wavelength-comparable to the plasmonic resonance of a nanorod-which lies in the optical window of biological tissue. Predictions of GNP optical properties are found to be in good agreement with the published experimental data.
Magnetorheological (MR) fluid is a smart material fabricated by mixing magnetic-responsive particles with non-magnetic-responsive carrier fluids. MR fluid dampers are able to provide rapid and reversible changes to their damping coefficient. To optimize the efficiency and effectiveness of such devices, a computational model is developed and presented where the flow field is simulated using the computational fluid dynamics approach, coupled with the magnetohydrodynamics model. Three different inlet pressure profiles were designed to replicate real loading conditions are examined, namely a constant pressure, a sinusoidal pressure profile, and a pressure profile mimicking the 1994 Northbridge earthquake. When the MR fluid damper was in its off-state, a linear pressure drop between the inlet and the outlet was observed. When a uniform perpendicular external magnetic field was applied to the annular orifice of the MR damper, a significantly larger pressure drop was observed across the annular orifice for all three inlet pressure profiles. It was shown that the fluid velocity within the magnetized annular orifice decreased proportionally with respect to the strength of the applied magnetic field until saturation was reached. Therefore, it was clearly demonstrated that the present model was capable of accurately capturing the damping characteristics of MR fluid dampers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.