SUMMARYThe incompressible Navier-Stokes equations are solved by an implicit pressure correction method on Cartesian meshes with local refinement. A simple and stable ghost cell method is developed to treat the boundary condition for the immersed bodies in the flow field. Multigrid methods are developed for both velocity and pressure correction to enhance the stability and convergence of the solution process. It is shown that the spatial accuracy of the method is second order in L 2 norm for both velocity and pressure. Various steady and unsteady flows over a 2D circular cylinder and a 3D sphere are computed to validate the present method. The capability of the present method to treat a moving body is also demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.