Modern computing has adopted the floating point type as a default way to describe computations with real numbers. Thanks to dedicated hardware support, such computations are efficient on modern architectures, even in double precision. However, rigorous reasoning about the resulting programs remains difficult. This is in part due to a large gap between the finite floating point representation and the infiniteprecision real-number semantics that serves as the developers' mental model. Because programming languages do not provide support for estimating errors, some computations in practice are performed more and some less precisely than needed.We present a library solution for rigorous arithmetic computation. Our numerical data type library tracks a (double) floating point value, but also a guaranteed upper bound on the error between this value and the ideal value that would be computed in the real-value semantics. Our implementation involves a set of linear approximations based on an extension of affine arithmetic. The derived approximations cover most of the standard mathematical operations, including trigonometric functions, and are more comprehensive than any publicly available ones. Moreover, while interval arithmetic rapidly yields overly pessimistic estimates, our approach remains precise for several computational tasks of interest. We evaluate the library on a number of examples from numerical analysis and physical simulations. We found it to be a useful tool for gaining confidence in the correctness of the computation.
Writing accurate numerical software is hard because of many sources of unavoidable uncertainties, including finite numerical precision of implementations. We present a programming model where the user writes a program in a real-valued implementation and specification language that explicitly includes different types of uncertainties. We then present a compilation algorithm that generates a finite-precision implementation that is guaranteed to meet the desired precision with respect to real numbers. Our compilation performs a number of verification steps for different candidate precisions. It generates verification conditions that treat all sources of uncertainties in a unified way and encode reasoning about finite-precision roundoff errors into reasoning about real numbers. Such verification conditions can be used as a standardized format for verifying the precision and the correctness of numerical programs. Due to their non-linear nature, precise reasoning about these verification conditions remains difficult and cannot be handled using state-of-the art SMT solvers alone. We therefore propose a new procedure that combines exact SMT solving over reals with approximate and sound affine and interval arithmetic. We show that this approach overcomes scalability limitations of SMT solvers while providing improved precision over affine and interval arithmetic. Our implementation gives promising results on several numerical models, including dynamical systems, transcendental functions, and controller implementations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.