The carbon nanotube (CNT) reinforced functionally graded materials (FGM) are expected to be the new generation materials having wide range of unexplored potential applications in various technological areas such as aerospace and structural and chemical industry. The present work deals with the finite element modeling and free vibration analysis of CNT based functionally graded beam using three-dimensional Timoshenko beam theory. It has been assumed that the material properties of CNT based FG beam vary only along the thickness and these properties are evaluated by rule of mixture. The extended Hamilton principle has been applied to find out the governing equations of CNT based FG beam. Finite element method is used to solve governing equation with the exact shape functions. Initial analysis deals with CNTs assumed to be oriented along the length direction only. But practically it is not possible. So, further work deals with the free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single walled carbon nanotubes (SWCNTs). The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. Results are presented in tabular and graphical forms to show the effects of carbon nanotube orientations, slenderness ratios, and boundary conditions on the dynamic behavior of the beam.
The application of Timoshenko beam theory is presented, thereby the effects of airfoil camber can be investigated analytically and numerically by considering rotary inertia and shear deformation in addition to moment of inertia, aerodynamic loading and bending/torsion coupling. Regarding a tuned blisk, the analysis is simplified to a single blade with plunge and pitch DOF. Pressure distribution of the airfoil surfaces and the resulting aerodynamic forces are calculated with ‘ANSYS/FLOTRAN’ during one-cycle time marching at several reduced frequencies. A parametric relation is then achieved by Roger’s approximation including quasi-inertia, quasi-damping, quasi-elastic and lag terms. The final aeroelastic equations are established by bending-torsion and aerodynamics-structure coupling which is solved by state space approach. This procedure is repeated at several free stream velocities until the real component of an eigenvalue equals zero. The latest velocity is the flutter speed. Following this procedure, flutter characteristics of two similar aeroleastic cases are determined considering only one difference in blade configuration; one with cambered and the other with uncambered airfoil. Comparison of these two cases shows the considerable suppression effect of airfoil camber on flutter.
Neural networks are becoming an increasingly popular technique for modelling data with complex and/or non-linear relationships. Diagnostic systems for condition monitoring applications fall particularly into this category, especially those using spectral vibration data. However, neural networks do have some major disadvantages compared with rule based diagnostic systems. The most important criticism is the lack of any explanation system, which would open up the neural networks internal operation for scrutiny. This paper illustrates how the internal parameters of an RBF network can be converted into symbolic rule format. The rule extraction algorithm and is described in detail
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.